eprintid: 53832 rev_number: 72 eprint_status: archive userid: 22748 dir: disk0/00/05/38/32 datestamp: 2025-08-11 02:39:38 lastmod: 2025-08-11 02:39:38 status_changed: 2025-08-11 02:39:38 type: thesis metadata_visibility: show contact_email: nael.100703@gmail.com creators_name: Siahaan, Nathanael Stevent Pahala creators_id: 3334210054 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: YUSTANTI, ERLINA contributors_name: WARDHONO, ENDARTO YUDO contributors_id: 196803262002122001 contributors_id: 197707092008121001 corp_creators: UNIVERSITAS SULTAN AGENG TIRTAYASA corp_creators: FAKULTAS TEKNIK corp_creators: JURUSAN TEKNIK METALURGI title: SINTESIS ULTRASONIKASI NANOPARTIKEL LIGNIN DARI LIMBAH TANDAN KOSONG KELAPA SAWIT DALAM SUASANA ALKALI UNTUK APLIKASI INHIBITOR KOROSI BAJA API 5L ispublished: pub subjects: TN subjects: TP divisions: Metalurgi full_text_status: restricted abstract: Lignin is a natural polymer compound with promising potential as an eco-friendly raw material for nanoparticle synthesis. This study aims to isolate lignin from oil palm empty fruit bunch (EFB) waste using the Ultrasonic Assisted Alkaline Method (UAAM), and to synthesize lignin nanoparticles (LNPs) for application as corrosion inhibitors for API 5L carbon steel. Extraction was carried out using a QSONICA Q500 sonicator at 80% amplitude for 30 minutes under alkaline conditions, followed by precipitation using HCl (pH 2), centrifugation, and drying. LNP synthesis was conducted by varying ultrasonic parameters (amplitude, probe-to-beaker volume ratio, and duration) at pH 10. Particle size characterization was performed using PSA, based on the best results from free settling tests. The results revealed that ultrasonic conditions significantly influenced lignin particle size and stability. The optimum parameters were identified at 70% amplitude, 40 minutes, and a 1.2:5 probe-to-beaker ratio. These optimum conditions were then applied for the synthesis of EFB-derived LNPs, which were further characterized by FTIR, SEM, and XRD analyses. Functional groups characteristic of lignin remained detectable after sonication, with noticeable changes in specific band intensities. Approximately 72.66% of the samples achieved the target particle size of less than 300 nm. Characterization showed that the synthesized LNPs were crystalline, exhibited irregular morphology, and retained key lignin functional groups. However, corrosion inhibition tests indicated that raw EFB lignin demonstrated higher effectiveness compared to its nanoparticle form. Therefore, EFB lignin can be directly utilized as a corrosion inhibitor without the need for nanoparticle synthesis.. date: 2025-06-23 date_type: published pages: 138 institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: TEKNIK METALURGI thesis_type: sarjana thesis_name: sarjana referencetext: [1] M. R. M. Asyraf et al., “Mechanical properties of oil palm fibre-reinforced polymer composites: a review,” Journal of Materials Research and Technology, vol. 17, pp. 33–65, Mar. 2022, doi: https://doi.org/10.1016/j.jmrt.2021.12.122. [2] Sotya Astutiningsih, Rahmat Zakiy Ashma, Hammam Harits Syihabuddin, Evawani Ellisa, and Muhammad Saukani, “Mechanical and Physical Characteristics of Oil Palm Empty Fruit Bunch as Fine Aggregate Replacement in Ordinary Portland Cement Mortar Composites,” Journal of Composites Science, vol. 8, no. 9, pp. 341–341, Aug. 2024, doi: https://doi.org/10.3390/jcs8090341. [3] M. R. Zakaria, M. A. Ahmad Farid, Y. Andou, I. Ramli, and M. A. Hassan, “Production of biochar and activated carbon from oil palm biomass: Current status, prospects, and challenges,” Industrial Crops and Products, vol. 199, p. 116767, Sep. 2023, doi: https://doi.org/10.1016/j.indcrop.2023.116767. [4] R. Dolah, R. Karnik, and H. Hamdan, “A Comprehensive Review on Biofuels from Oil Palm Empty Bunch (EFB): Current Status, Potential, Barriers and Way Forward,” Sustainability, vol. 13, no. 18, p. 10210, Sep. 2021, doi: https://doi.org/10.3390/su131810210. [5] S. Mohamad, K. Ng, B. C. Ang, and F. Muhamad, “Fabrication of water-stable soy protein isolate (SPI)/ carboxymethyl cellulose (CMC) scaffold sourced from oil palm empty fruit bunch (OPEFB) for bone tissue engineering,” Industrial Crops and Products, vol. 224, pp. 120325–120325, Dec. 2024, doi: https://doi.org/10.1016/j.indcrop.2024.120325. [6] V. U. Siddiqui, SM Sapuan, Aliyu Isah, J. Yusuf, and A. Khan, “Advancements in multiscale oil palm fiber composites: Manufacturing techniques, performance evaluation, and industrial applications,” Industrial Crops and Products, vol. 213, pp. 118399–118399, Apr. 2024, doi: https://doi.org/10.1016/j.indcrop.2024.118399. [7] Melbi Mahardika et al., “Recent Developments in Oil Palm Empty Fruit Bunch (OPEFB) Fiber Composite,” Journal of natural fibers, vol. 21, no. 1, Feb. 2024, doi: https://doi.org/10.1080/15440478.2024.2309915. [8] M. A. M. Atarabusyi, N. M. Abdullah, S. N. H. Arifin, N. M. Apandi, and M. F. H. Ali, “Potential Utilization of Oil Palm Mesocarp and Oil Palm Empty Fruit Bunch Fiber Powder as Natural coagulant-flocculant for POME Treatment,” International Journal of Integrated Engineering, vol. 17, no. 1, pp. 278–288, Apr. 2025, doi: https://penerbit.uthm.edu.my/ojs/index.php/ijie/article/view/17584. [9] Nor Faizah Jalani and Nahrul Hayawin Zainal, “Sustainable Biorefinery Concept with Valorization and Utilization of Oil Palm Biomass for Value-Added Products,” pp. 59–77, Jan. 2024, doi: https://doi.org/10.1007/978-981-97-8277-2_5. [10] A. Ebringerová and Z. Hromádková, “An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides,” Open Chemistry, vol. 8, no. 2, pp. 243–257, Apr. 2010, doi: https://doi.org/10.2478/s11532-010-0006-2. [11] L. E. Low et al., “Lignin nanoparticles: The next green nanoreinforcer with wide opportunity,” Environmental Nanotechnology, Monitoring & Management, vol. 15, p. 100398, May 2021, doi: https://doi.org/10.1016/j.enmm.2020.100398. [12] Z.-G. Luo et al., “Modified nano-lignin as a novel biomass-derived corrosion inhibitor for enhanced corrosion resistance of carbon steel,” Corrosion Science, vol. 227, pp. 111705–111705, Nov. 2023, doi: https://doi.org/10.1016/j.corsci.2023.111705. [13] Sílvia Pérez-Rafael et al., “Continuous sonochemical nanotransformation of lignin – Process design and control,” Ultrasonics Sonochemistry, vol. 98, pp. 106499–106499, Aug. 2023, doi: https://doi.org/10.1016/j.ultsonch.2023.106499. [14] I. A. Gilca, V. I. Popa, and C. Crestini, “Obtaining lignin nanoparticles by sonication,” Ultrasonics Sonochemistry, vol. 23, pp. 369–375, Mar. 2015, doi: https://doi.org/10.1016/j.ultsonch.2014.08.021. [15] A. Manaf, A. A. Fahmi, and E. Yustanti, “The effect of diameter ratio between transducers and reactor in sonication-assisted synthesis of Ba0.7Sr0.3TiO3 and Ba0.3Sr0.7TiO3 nanoparticles,” Apr. 2016, doi: https://doi.org/10.1063/1.4946941. [16] L. M. Nubatonis, L. Hartoto, E. Warsiki, and K. Syamsu, “Optimization of Ultrasonication Time and Amplitude to Obtain Microbial Nanocellulose with High Degree of Crystallinity,” Journal of Metastable and Nanocrystalline Materials, vol. 36, pp. 21–29, May 2023, doi: https://doi.org/10.4028/p-x7sc0g. [17] F. O. Kolawole, S.K. Kolawole, J. O. Agunsoye, and J. A. Adebisi, “Mitigation of Corrosion Problems in API 5L Steel Pipeline – A Review,” Journal of Materials and Environmental Sciences, vol. 9, no. 8, pp. 2937–2410, Jul. 2018. [18] A. H. Faris, A. M. Najib, K. J. Hamid, R. H. Yousif, and Mohamad, “Using Lignin and Tannin as Green Corrosion Inhibitors for Carbon Steel Petrolum Tanks,” BIO Web of Conferences, vol. 97, pp. 00026–00026, Jan. 2024, doi: https://doi.org/10.1051/bioconf/20249700026. [19] P. A. Rasheed, R. P. Pandey, K. A. Jabbar, A. Samara, A. M. Abdullah, and K. A. Mahmoud, “Chitosan/Lignosulfonate Nanospheres as ‘Green’ Biocide for Controlling the Microbiologically Influenced Corrosion of Carbon Steel,” Materials, vol. 13, no. 11, pp. 2484–2484, May 2020, doi: https://doi.org/10.3390/ma13112484. [20] A. Dastpak et al., “From Waste to Valuable Resource: Lignin as a Sustainable Anti-Corrosion Coating,” Coatings, vol. 8, no. 12, p. 454, Dec. 2018, doi: https://doi.org/10.3390/coatings8120454. [21] C. Verma et al., “Principles and theories of green chemistry for corrosion science and engineering: design and application,” Green Chemistry, vol. 26, no. 8, pp. 4270–4357, Jan. 2024, doi: https://doi.org/10.1039/d3gc05207a. [22] A. Kumar Das, M. N. Islam, A. Akter, A. R. Promie, Md. M. Billah, and M. J. H. Akanda, “Natural Fiber-based Nanocomposites as Corrosion Inhibitors,” Anticorrosive Nanomaterials, pp. 191–206, May 2022, doi: https://doi.org/10.1039/9781839166259-00191. [23] Safia Syazana Mohtar, T. Nur, A. Mujahid, Norsalliana Shaari, and H. Mat, “An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch,” Carbohydrate Polymers, vol. 166, pp. 291–299, Jun. 2017, doi: https://doi.org/10.1016/j.carbpol.2017.02.102. [24] I. Kurnia, S. Karnjanakom, and G. Guan, “Lignin from Biomass − Sources, Extraction, and Application,” Plant Biomass Derived Materials, pp. 43–62, Mar. 2024, doi: https://doi.org/10.1002/9783527839032.ch3. [25] Dalma Schieppati et al., “Chemical and Biological Delignification of Biomass: A Review,” Industrial & Engineering Chemistry Research, vol. 62, no. 33, pp. 12757–12794, Aug. 2023, doi: https://doi.org/10.1021/acs.iecr.3c01231. [26] R. Diyanilla, T. S. Hamidon, L. Suryanegara, and M. H. Hussin, “Overview of Pretreatment Methods Employed on Oil Palm Biomass in Producing Value-added Products: A Review,” BioResources, vol. 15, no. 4, 2020, doi: http://dx.doi.org/10.15376/biores.15.4.Diyanilla. [27] Rame, “Oil Palm Empty Fruit Bunches (OPEFB): Existing Utilization and Current Trends Bio Refinery in Indonesia ,” E3S Web of Conferences, vol. 31, 2018, doi: https://doi.org/10.1051/e3sconf/20183103014. [28] A. Ahmad, Rahmad, N. Rita, and L. Noorjannah, “Effect of acid hydrolysis on bioethanol production from oil palm fruit bunches,” Materials Today: Proceedings, vol. 63, pp. S276–S281, 2022, doi: https://doi.org/10.1016/j.matpr.2022.02.461. [29] L. Indriati, N. Elyani, and S. F. Dina, “Empty fruit bunches, potential fiber source for Indonesian pulp and paper industry,” IOP Conference Series: Materials Science and Engineering, vol. 980, p. 012045, Jan. 2021, doi: https://doi.org/10.1088/1757-899x/980/1/012045. [30] S. H. Anita et al., “Optimization of Microwave-Assisted Oxalic Acid Pretreatment of Oil Palm Empty Fruit Bunch for Production of Fermentable Sugars,” Waste and Biomass Valorization, vol. 11, no. 6, pp. 2673–2687, Jan. 2019, doi: https://doi.org/10.1007/s12649-018-00566-w. [31] F. Fahma, S. Iwamoto, N. Hori, T. Iwata, and A. Takemura, “Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB),” Cellulose, vol. 17, no. 5, pp. 977–985, Aug. 2010, doi: https://doi.org/10.1007/s10570-010-9436-4. [32] Y. Sudiyani et al., “Utilization of Biomass Waste Empty Fruit Bunch Fiber of Palm Oil for Bioethanol Production Using Pilot–Scale Unit,” Energy Procedia, vol. 32, pp. 31–38, 2013, doi: https://doi.org/10.1016/j.egypro.2013.05.005. [33] A. S. Baharuddin, N. S. H. M. Yunos, N. A. N. Mahmud, and R. Zakaria, “Effect of high-pressure steam treatment on enzymatic saccharification of oil palm empty fruit bunches,” BioResources, vol. 7, no. 3, Jul. 2012, doi: http://dx.doi.org/10.15376/biores.7.3.3525-3538. [34] N. Abdullah, F Sulaiman, and H Gerhauser, “Characterisation of Oil Palm Empty Fruit Bunches for Fuel Application,” Journal of Physical Therapy Science, vol. 22, no. 1, Jan. 2011. [35] C. E. Almeida-Naranjo, V. Valle, A. Aguilar, F. Cadena, J. Kreiker, and B. Raggiotti, “Water Absorption Behavior of Oil Palm Empty Fruit Bunch (OPEFB) and Oil Palm Kernel Shell (OPKS) as Fillers in Acrylic Thermoplastic Composites,” Materials, vol. 15, no. 14, p. 5015, Jul. 2022, doi: https://doi.org/10.3390/ma15145015. [36] O. R. Alonge, M. B. Ramli, and T. J. Lawalson , “Properties of hybrid cementitious composite with metakaolin, nanosilica and epoxy,” Construction and Building Materials, vol. 155, pp. 740–750, Nov. 2017, doi: https://doi.org/10.1016/j.conbuildmat.2017.08.105. [37] C. A. S. Hill and Abdul Khalil H.P.S, “Effect of environmental exposure upon the mechanical properties of coir or oil palm fiber reinforced composites,” Journal of Applied Polymer Science 77, vol. 6, pp. 1322–1330, Jul. 2000, doi: http://dx.doi.org/10.1002/1097-4628(20000808)77:6%3C1322::AID-APP17%3E3.0.CO;2-R. [38] R. Roslan, M. N. A. Yaakob, and Ms Fathihah, “Extraction of Lignin from Empty Fruit Bunch Fiber via Microwave-Assisted Acid Hydrotrope Solvent,” Current Science and Technology, vol. 1, no. 2, pp. 26–33, Dec. 2021, doi: https://doi.org/10.15282/cst.v1i2.6754. [39] H. Sadeghifar and A. Ragauskas, “Lignin as a bioactive polymer and heavy metal absorber- an overview,” Chemosphere, vol. 309, p. 136564, Dec. 2022, doi: https://doi.org/10.1016/j.chemosphere.2022.136564. [40] M. B. Agustin, P. A. Penttilä, M. Lahtinen, and K. S. Mikkonen, “Rapid and Direct Preparation of Lignin Nanoparticles from Alkaline Pulping Liquor by Mild Ultrasonication,” ACS Sustainable Chemistry & Engineering, vol. 7, no. 24, pp. 19925–19934, Nov. 2019, doi: https://doi.org/10.1021/acssuschemeng.9b05445. [41] A. H. Ab Rahim, Z. Man, A. Sarwono, W. S. Wan Hamzah, N. M. Yunus, and C. D. Wilfred, “Extraction and Comparative Analysis of Lignin Extract from Alkali and Ionic Liquid Pretreatment,” Journal of Physics: Conference Series, vol. 1123, p. 012052, Nov. 2018, doi: https://doi.org/10.1088/1742-6596/1123/1/012052. [42] E. Cequier, J. Aguilera, M. Balcells, and R. Canela-Garayoa, “Extraction and characterization of lignin from olive pomace: a comparison study among ionic liquid, sulfuric acid, and alkaline treatments,” Biomass Conversion and Biorefinery, Mar. 2019, doi: https://doi.org/10.1007/s13399-019-00400-w. [43] Z. Liu, Z. Chen, F. Han, X. Kang, H. Gu, and L. Yang, “Microwave-assisted method for simultaneous hydrolysis and extraction in obtaining ellagic acid, gallic acid and essential oil from Eucalyptus globulus leaves using Brönsted acidic ionic liquid [HO3S(CH2)4mim]HSO4,” Industrial Crops and Products, vol. 81, pp. 152–161, Mar. 2016, doi: https://doi.org/10.1016/j.indcrop.2015.11.074. [44] F. Sultana Toma, Z. Jemaat, M. D. H. Beg, M. R. Khan, and R. M. Yunus, “Comparison between lignin extraction by alkaline and ultrasound-assisted alkaline treatment from oil palm empty fruit bunch,” IOP Conference Series: Materials Science and Engineering, vol. 1092, no. 1, p. 012027, Mar. 2021, doi: https://doi.org/10.1088/1757-899x/1092/1/012027. [45] S. Hidayati, W. Satyajaya, and A. Fudholi, “Lignin isolation from black liquor from oil palm empty fruit bunch using acid,” Journal of Materials Research and Technology, vol. 9, no. 5, pp. 11382–11391, Sep. 2020, doi: https://doi.org/10.1016/j.jmrt.2020.08.023. [46] N. Ngadi and N. S. R. Rusli, “Ultrasound-Assisted Extraction of Lignin from Oil Palm Frond,” Jurnal Teknologi, vol. 67, no. 4, Mar. 2014, doi: https://doi.org/10.11113/jt.v67.2801. [47] Z. Zhang, V. Terrasson, and E. Guénin, “Lignin Nanoparticles and Their Nanocomposites,” Nanomaterials, vol. 11, no. 5, p. 1336, May 2021, doi: https://doi.org/10.3390/nano11051336. [48] W. D. H. Schneider, A. J. P. Dillon, and M. Camassola, “Lignin nanoparticles enter the scene: A promising versatile green tool for multiple applications,” Biotechnology Advances, vol. 47, p. 107685, Mar. 2021, doi: https://doi.org/10.1016/j.biotechadv.2020.107685. [49] H. Guo et al., “Red room temperature phosphorescence from lignin,” Angewandte Chemie International Edition, Dec. 2024, doi: https://doi.org/10.1002/anie.202421112. [50] A. P. Richter et al., “Synthesis and Characterization of Biodegradable Lignin Nanoparticles with Tunable Surface Properties,” Langmuir, vol. 32, no. 25, pp. 6468–6477, Jun. 2016, doi: https://doi.org/10.1021/acs.langmuir.6b01088. [51] R. Carmen, S. Raza, P. A. Heiden, J. V. Vermaas, and R. G. Ong, “Lignin Nanoparticle Morphology Depends on Polymer Properties and Solvent Composition: an Experimental and Computational Study,” ACS Applied Polymer Materials, vol. 4, no. 10, pp. 6925–6935, Sep. 2022, doi: https://doi.org/10.1021/acsapm.2c00854. [52] Q. Tang, Y. Qian, D. Yang, X. Qiu, Y. Qin, and M. Zhou, “Lignin-Based Nanoparticles: A Review on Their Preparations and Applications,” Polymers, vol. 12, no. 11, p. 2471, Oct. 2020, doi: https://doi.org/10.3390/polym12112471. [53] Sylwia Głowniak, B. Szczęśniak, J. Choma, and Mietek Jaroniec, “Recent Developments in Sonochemical Synthesis of Nanoporous Materials,” Molecules, vol. 28, no. 6, pp. 2639–2639, Mar. 2023, doi: https://doi.org/10.3390/molecules28062639. [54] E. Melro et al., “Dissolution of kraft lignin in alkaline solutions,” International Journal of Biological Macromolecules, vol. 148, pp. 688–695, Apr. 2020, doi: https://doi.org/10.1016/j.ijbiomac.2020.01.153. [55] P. Feng, H. Wang, S. Gan, B. Liao, and L. Niu, “Novel Lignin‐Functionalized Waterborne Epoxy Composite Coatings with Excellent Anti‐Aging, UV Resistance, and Interfacial Anti‐Corrosion Performance,” Small, vol. 20, no. 28, Feb. 2024, doi: https://doi.org/10.1002/smll.202312085. [56] O. ur Rahman, S. Shi, J. Ding, D. Wang, S. Ahmad, and H. Yu, “Lignin nanoparticles: synthesis, characterization and corrosion protection performance,” New Journal of Chemistry, vol. 42, no. 5, pp. 3415–3425, Feb. 2018, doi: https://doi.org/10.1039/C7NJ04103A. [57] Sushmitha Devadasu, Uday Bagale, Shirish Hari Sonawane, and Srinath Suranani, “Development of ultra-high build self-healing coatings using amino silanized lignin nanocapsules,” Materials Today Proceedings, vol. 45, pp. 5745–5751, Jan. 2021, doi: https://doi.org/10.1016/j.matpr.2021.02.576. [58] S. Monaci et al., “Lignin-Derivative Ionic Liquids as Corrosion Inhibitors,” Molecules, vol. 28, no. 14, p. 5568, Jul. 2023, doi: https://doi.org/10.3390/molecules28145568. [59] S. Yahya, N. K. Othman, A. R. Daud, A. Jalar, and R. Ismail, “The influence of temperature on the inhibition of carbon steel corrosion in acidic lignin,” Anti-Corrosion Methods and Materials, vol. 62, no. 5, pp. 301–306, Sep. 2015, doi: https://doi.org/10.1108/acmm-01-2014-1339. [60] J. Reyes-Rivera and T. Terrazas, “Lignin Analysis by HPLC and FTIR,” Methods in molecular biology, pp. 193–211, Jan. 2017, doi: https://doi.org/10.1007/978-1-4939-6722-3_14. [61] M. Arfat, A. H. Mustafa, V. R. Madduluri, and R. Roslan, “Lignin extractions from oil palm empty fruit bunch under pressurized and inert conditions,” International Journal of Chemical and Biochemical Sciences (IJCBS), vol. 25, no. 12, pp. 158–164, Jan. 2024. [62] U. P. Perera, M. L. Foo, and I. M. L. Chew, “Synthesis and characterization of lignin nanoparticles isolated from oil palm empty fruit bunch and application in biocomposites.,” Sustainable Chemistry for Climate Action, p. 100011, Dec. 2022, doi: https://doi.org/10.1016/j.scca.2022.100011. [63] R. Grappa, V. Venezia, B. Silvestri, A. Costantini, and G. Luciani, “Synthesis of Lignin Nanoparticles: Top-Down and Bottom-Up Approaches,” One Health 2023, p. 3, Feb. 2024, doi: https://doi.org/10.3390/msf2024025003. [64] Erlina Yustanti, Muhammad Zuhdi Syihab, Latifa Hanum Lalasari, and Azwar Manaf, “Synthesis of TiO2 from TiOSO4 Solution with Sonochemical Method,” Materials science forum, vol. 1057, pp. 243–254, Mar. 2022, doi: https://doi.org/10.4028/p-g9k5mq. [65] A. Bampouli, Q. Goris, M. N. Hussain, Olivier Louisnard, G. Stefanidis, and T. V. Gerven, “Investigation of Design and Operating Parameters in a Sonication System for Viscous Solutions: Effects of Input Power, Horn Tip Diameter and Reactor Capacity,” Jan. 2023, doi: https://doi.org/10.2139/ssrn.4523679. [66] R. N. Golykh, V. N. Khmelev, and S. S. Khmelev, “Process modeling of cavitation zone in process vessels with high-viscous and fine-dispersed liquid media,” 2011 International Conference and Seminar on Micro/Nanotechnologies and Electron Devices Proceedings, pp. 251–256, Jun. 2011, doi: https://doi.org/10.1109/edm.2011.6006962. [67] J. Behal, M. S. Maru, Rishu Katwal, D. Pathak, and V. Kumar, “Ultrasonic assisted green synthesis approach for nanotechnological materials,” Deleted Journal, vol. 3, pp. 100013–100013, Jul. 2024, doi: https://doi.org/10.1016/j.jacomc.2024.100013. [68] L. Risanto, E. Hermiati, and Y. Sudiyani, “Properties of Lignin from Oil Palm Empty Fruit Bunch and Its Application for Plywood Adhesive,” Makara Journal of Technology, vol. 18, no. 2, p. 67, Oct. 2014, doi: https://doi.org/10.7454/mst.v18i2.2944. [69] M. M. Muzakir, F. O. Nwosu, and S. O. Amusat, “Mild Steel Corrosion Inhibition in a NaCl Solution by Lignin Extract of Chromolaena odorata,” Portugaliae Electrochimica Acta, vol. 37, no. 6, pp. 359–372, 2019, doi: https://doi.org/10.4152/pea.201906359. [70] J. Tian et al., “Pickering emulsions produced with kraft lignin colloids destabilized by in situ pH shift: Effect of emulsification energy input and stabilization mechanism,” Colloids and Surfaces A Physicochemical and Engineering Aspects, vol. 670, pp. 131503–131503, Apr. 2023, doi: https://doi.org/10.1016/j.colsurfa.2023.131503. [71] G. Colucci et al., “Development of colloidal lignin particles through particle design strategies and screening of their Pickering stabilizing potential,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 666, pp. 131287–131287, Jun. 2023, doi: https://doi.org/10.1016/j.colsurfa.2023.131287. [72] D. D. Edmundson, R. R. Gustafson, and A. B. Dichiara, “Sonochemical synthesis of lignin nanoparticles and their applications in poly (vinyl) alcohol composites,” International Journal of Biological Macromolecules, vol. 254, pp. 127487–127487, Oct. 2023, doi: https://doi.org/10.1016/j.ijbiomac.2023.127487. [73] P. Gonugunta, S. Vivekanandhan, A. K. Mohanty, and M. Misra, “A Study on Synthesis and Characterization of Biobased Carbon Nanoparticles from Lignin,” World Journal of Nano Science and Engineering, vol. 02, no. 03, pp. 148–153, 2012, doi: https://doi.org/10.4236/wjnse.2012.23019. [74] J. Azimvand, K. Didehban, and S. A. Mirshokrai, “Preparation and Characterization of Lignin Polymeric Nanoparticles Using the Green Solvent Ethylene Glycol: Acid Precipitation Technology,” BioResources, vol. 13, no. 2, Feb. 2018, doi: https://doi.org/10.15376/biores.13.2.2887-2897. [75] J. W. Heo, L. An, M. S. Kim, D. H. Youn, and Y. S. Kim, “Preparation and characterization of zwitterion-substituted lignin/Nafion composite membranes,” International Journal of Biological Macromolecules, vol. 253, p. 127421, Dec. 2023, doi: https://doi.org/10.1016/j.ijbiomac.2023.127421. [76] Jitao Lv, L. Luo, J. Zhang, P. Christie, and S. Zhang, “Adsorption of mercury on lignin: Combined surface complexation modeling and X-ray absorption spectroscopy studies,” Environmental pollution, vol. 162, pp. 255–261, Mar. 2012, doi: https://doi.org/10.1016/j.envpol.2011.11.012. [77] Saber Gueddida, Sébastien Lebègue, Andreea Pasc, A. Dufour, and M. Badawi, “Ab initio investigation of the adsorption of phenolic compounds, CO, and H2O over metallic cluster/silica catalysts for hydrodeoxygenation process,” Applied Surface Science, vol. 567, pp. 150790–150790, Aug. 2021, doi: https://doi.org/10.1016/j.apsusc.2021.150790. [78] M. Lievonen et al., “A simple process for lignin nanoparticle preparation,” Green Chemistry, vol. 18, no. 5, pp. 1416–1422, 2016, doi: https://doi.org/10.1039/c5gc01436k. [79] F. L. Motta, B. A. G. Melo, and M. H. A. Santana, “Deprotonation and protonation of humic acids as a strategy for the technological development of pH-responsive nanoparticles with fungicidal potential,” New Biotechnology, vol. 33, no. 6, pp. 773–780, Jul. 2016, doi: https://doi.org/10.1016/j.nbt.2016.07.003. [80] A. Moreno et al., “Unravelling the Hydration Barrier of Lignin Oleate Nanoparticles for Acid‐ and Base‐Catalyzed Functionalization in Dispersion State,” Angewandte Chemie, vol. 60, no. 38, pp. 20897–20905, Aug. 2021, doi: https://doi.org/10.1002/anie.202106743. [81] M.-L. Mattinen et al., "Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications," Enzyme and Microbial Technology, vol. 110, pp. 48–56, Apr. 2018, doi: 10.1016/j.enzmictec.2018.01.005. [82] Z.-H. Liu et al., "Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA)," Green Chemistry, vol. 21, no. 4, pp. 606–617, Jan. 2019, doi: 10.1039/C8GC03290D.matti [83] S. Cailotto et al., "Sustainable Strategies in the Synthesis of Lignin Nanoparticles for the Release of Active Compounds: A Comparison," ChemSusChem, vol. 13, no. 17, pp. 4537–4547, Sep. 2020, doi: 10.1002/cssc.202001140. citation: Siahaan, Nathanael Stevent Pahala (2025) SINTESIS ULTRASONIKASI NANOPARTIKEL LIGNIN DARI LIMBAH TANDAN KOSONG KELAPA SAWIT DALAM SUASANA ALKALI UNTUK APLIKASI INHIBITOR KOROSI BAJA API 5L. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/53832/12/Nathanael%20Stevent%20Pahala%20Siahaan_3334210054_Fulltext.pdf document_url: https://eprints.untirta.ac.id/53832/11/Nathanael%20Stevent%20Pahala%20Siahaan_3334210054_01.pdf document_url: https://eprints.untirta.ac.id/53832/6/Nathanael%20Stevent%20Pahala%20Siahaan_3334210054_02.pdf document_url: https://eprints.untirta.ac.id/53832/7/Nathanael%20Stevent%20Pahala%20Siahaan_3334210054_03.pdf document_url: https://eprints.untirta.ac.id/53832/8/Nathanael%20Stevent%20Pahala%20Siahaan_3334210054_04.pdf document_url: https://eprints.untirta.ac.id/53832/2/Nathanael%20Stevent%20Pahala%20Siahaan_3334210054_05.pdf document_url: https://eprints.untirta.ac.id/53832/9/Nathanael%20Stevent%20Pahala%20Siahaan_3334210054_Ref.pdf document_url: https://eprints.untirta.ac.id/53832/3/Nathanael%20Stevent%20Pahala%20Siahaan_3334210054_Lamp.pdf document_url: https://eprints.untirta.ac.id/53832/1/Nathanael%20Stevent%20Pahala%20Siahaan_3334210054_CP.pdf