eprintid: 53063 rev_number: 31 eprint_status: archive userid: 23250 dir: disk0/00/05/30/63 datestamp: 2025-07-29 08:45:50 lastmod: 2025-07-29 08:45:50 status_changed: 2025-07-29 08:45:50 type: thesis metadata_visibility: show contact_email: 3334190016@untirta.ac.id creators_name: MAULANA, EDWIN creators_id: 3334190016 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: ZULAIDA, YENI MURIANI contributors_name: SURYANA, SURYANA contributors_id: 197401032005012001 contributors_id: 197402162001121001 corp_creators: UNIVERSITAS SULTANG AGENG TIRTAYASA corp_creators: FAKULTAS TEKNIK corp_creators: JURUSAN TEKNIK METALURGI title: PENGARUH WAKTU PENGADUKAN DAN UKURAN FOAMING AGENT CaCO3 MENGGUNAKAN LIMBAH KULIT TELUR TERHADAP KEMAMPUAN ABSORBSI SUARA PADA ALUMINIUM FOAM ispublished: pub subjects: TJ subjects: TS divisions: FT divisions: Metalurgi full_text_status: restricted note: Penelitian ini bertujuan mengetahui pengaruh variasi waktu pengadukan (30, 45, 60 detik) dan ukuran foaming agent CaCO₃ (100#, 120#, 140#) dari limbah kulit telur terhadap struktur dan kemampuan peredaman suara aluminium foam. Foam dibuat dengan metode melt route pada suhu 760°C menggunakan aluminium ADC12, CaCO₃ 3 wt% (dikalsinasi pada 105°C), dan Al₂O₃ 1,5 wt% sebagai penstabil viskositas. Hasil menunjukkan bahwa peningkatan waktu pengadukan memperkecil ukuran pori dan meningkatkan densitas, namun menurunkan porositas. Pada ukuran 100#, pori mengecil dari 0,777 mm (30 detik) menjadi 0,203 mm (60 detik), densitas naik dari 0,12 menjadi 0,18 g/cm³, dan porositas turun dari 95,6% ke 93,4%. Ukuran 140# menunjukkan struktur lebih stabil. Uji akustik dengan metode Impedance Tube Testing menunjukkan spesimen 100#–60 detik memiliki performa terbaik, dengan nilai Transmission Loss rata-rata 48,19 dB dan puncak 58 dB di frekuensi 125 Hz. Sebaliknya, ukuran 120# 60 detik menunjukkan penurunan TL akibat aglomerasi. Secara keseluruhan, CaCO₃ dari kulit telur efektif sebagai foaming agent dalam menghasilkan aluminium foam dengan kemampuan peredaman suara yang baik. abstract: This study aims to determine the effect of variations in stirring time (30, 45, 60 seconds) and foaming agent size CaCO₃ (100#, 120#, 140#) from eggshell waste on the structure and sound dampening ability of aluminum foam. Foam was made by the melt route method at a temperature of 760°C using aluminum ADC12, CaCO₃ 3 wt% (calcined at 105°C), and Al₂O₃ 1.5 wt% as a viscosity stabilizer. The results showed that increasing stirring time reduced the pore size and increased the density, but decreased the porosity. At the size of 100#, the pores decreased from 0.777 mm (30 seconds) to 0.203 mm (60 seconds), the density increased from 0.12 to 0.18 g/cm³, and the porosity decreased from 95.6% to 93.4%. The 140# size shows a more stable structure. Acoustic tests using the Impedance Tube Testing method show that the 100#–60 second specimen has the best performance, with an average Transmission Loss value of 48.19 dB and a peak of 58 dB at a frequency of 125 Hz. In contrast, the 120# 60 second size shows a decrease in TL due to agglomeration. Overall, CaCO₃ from eggshells is effective as a foaming agent in producing aluminum foam with good sound damping capabilities. date: 2025-07-29 date_type: published pages: 125 institution: FAKULTAS TEKNIK UNIVERSITAS SULTAN AGENG TIRTAYASA department: TEKNIK METALURGI thesis_type: sarjana thesis_name: sarjana referencetext: [1] Han, Fusheng, et al. Acoustic absorption behaviour of an open-celled aluminium foam. Journal of Physics D: Applied Physics, 2003, 36.3: 294. [2] Karuppasamy, R.; Barik, Debabrata. Production methods of aluminium foam: A brief review. Materials Today: Proceedings, 2021, 37: 1584-1587. [3] Parveez, Bisma, et al. Microstructure and mechanical properties of metal foams fabricated via melt foaming and powder metallurgy technique: A review. Materials, 2022, 15.15: 5302. [4] Karuppasamy, R., et al. Investigation on the effect of aluminium foam made of A413 aluminium alloy through stir casting and infiltration techniques. International Journal of Materials Engineering Innovation, 2020, 11.1: 34-50. [5] Praveen Kumar, T. N.; Venkateswaran, S.; Seetharamu, S. Effect of Grain Size of Calcium Carbonate Foaming Agent on Physical Properties of Eutectic Al–Si Alloy Closed Cell Foam. Transactions of the Indian Institute of Metals, 2015, 68: 109-112. [6] Gumelar, M. H.; Marji, Marji; Harly, Muchammad. Penggunaan antara thermal foam alumunium 5mm dan karpet 5mm untuk meredam kebisingan diberbagai kecepatan kendaraan mesin diesel konvensional 2446cc pada kabin pengemudi/MH Richard Gelar Gumelar. Jurnal Teknik Otomotif Kajian Keilmuan dan Pengajaran, 2022, 6.2. [7] King’Ori, A. M. A review of the uses of poultry eggshells and shell membranes. International Journal of Poultry Science, 2011, 10.11: 908-912. [8] Davis, J. R., et al. Speciallty Handbook, Alumunium and Alumunium Alloys. ASM International Handbook Comitee, Ohio, 1993. [9] Hatch, J. E., & Aluminum Association. (1990). American Society for Metals, Aluminium Properties and Physical Metallurgy. Metal Park, Ohio, 1990, 279-300. [10] Sun, Yumeng, et al. A review of the friction stir welding of dissimilar materials between aluminum alloys and copper. Metals, 2022, 12.4: 675. [11] Surdia, T. and Saito, S. Pengetahuan Bahan Teknik. Jakarta: Pradnya Paramita. 1985. [12] Davis, J. R. Aluminum and aluminum alloys. ASM international, 1993. [13] ASM International. ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International. 2013. [14] Lumley, R. Aluminum casting technology. ASM International. 2012. [15] Wang, L.; Makhlouf, M.; Apelian, D. Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships. International materials reviews, 1995, 40.6: 221-238. [16] Kang, C. G., Kim, H. J., & Kim, H. S. Effects of Fe content on mechanical properties and fatigue behavior of ADC12 alloys. Materials Science and Engineering: A, 2009, 499(1-2), 509-515. [17] Lefebvre, L.‐P.; Banhart, John; Dunand, David C. Porous metals and metallic foams: current status and recent developments. Advanced engineering materials, 2008, 10.9: 775-787. [18] Kennedy, A. Handbook of cellular metals: Production, processing, applications. Wiley-VCH. 2012. [19] Banhart, John. Manufacture, characterisation and application of cellular metals and metal foams. Progress in materials science, 2001, 46.6: 559-632. [20] Ashby, M. F., & Evans, A. G. (Eds.). Cellular solids: Structure and properties (2nd ed.). Cambridge University Press. 2000. [21] Alhusseny, Ahmed Niameh Mehdy; Nasser, Adel; Al-Zurfi, N. M. High-porosity metal foams: potentials, applications, and formulations. Porosity-Process, Technologies and Applications, 2018, 181-200. [22] Betts, C. Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review. Materials Science and Technology, 2012, 28.2: 129-143. [23] Miyoshi, Tetsuji, et al. Alporas aluminum foam: production process, properties, and applications. Advanced engineering materials, 2000, 2.4: 179-183. [24] Anfilov, N. V. et al. (2015) ‘Application of metal hydrides as pore-forming agents for obtaining metal foams’, Journal of Alloys and Compounds, 645(S1), pp. S132– S135. doi: 10.1016/j.jallcom.2015.01.153. [25] Sutarno, Syoni Soepriyanto; Korda, Akhmad A.; Dirgantara, Tatacipta. Pengaruh kalsia alumina (CaO. Al2O3) pada busa aluminium AL-7000 dengan agen pembusa kalsium karbonat (CaCO3). Prosiding Simposium Nasional Inovasi dan Pembelajaran Sains. Bandung, 2015. [26] Sutarno, Sutarno; Nugraha, Bagja; Kusharjanto, Kusharjanto. Optimization of calcium carbonate content on synthesis of aluminum foam and its compressive strength characteristic. In: AIP Conference Proceedings. AIP Publishing, 2017. [27] ASTM. ‘Standard Guide for Preparation of Metallographic Specimens’, 03(July). 2001. [28] Ekariadi, Ikhsan; Zulaida, Yeni Muriani; Suryana, Suryana. Pengaruh Penambahan CaCO3 Dari Limbah Kulit Telur Dan Waktu Pengadukan Pada Pembuatan Aluminium Foam Menggunakan Metode Melt Route. Jurnal Rekayasa Mesin, 2023, 14.2: 409-420. [29] Oukal, Hamdan ZL. Adsorption of Curcumin and Silver-Nanoparticles Using Eggshells Powder. 2019. PhD Thesis. [30] Bps. {Produksi Telur Ayam Petelur menurut Provinsi (Ton), 2018-2020. Available at: https://www.bps.go.id/indicator/24/491/1/produksi-telur-ayampetelur-menurut-provinsi.html. 2020. [31] Puspitarasi, Rafika Dwi; Swasono, Muh Aniar Hari. Pengaruh lama perebusan kulit telur pada pembuatan bubuk suplemen kalsium. TEKNOLOGI PANGAN: Media Informasi dan Komunikasi Ilmiah Teknologi Pertanian, 2018, 9.1: 20- [32] Alhusseny, Ahmed Niameh Mehdy; Nasser, Adel; Al-zurfi, N. M. High-porosity metal foams: potentials, applications, and formulations. Porosity-Process, Technologies and Applications, 2018, 181-200. [33] AN, Jintao; Chen, Changjun; Zhang, Min. Effect of CaCO3 content change on the production of closed-cell aluminum foam by selective laser melting. Optics & Laser Technology, 2021, 141: 107097. [34] Ghaleh, M. Heidari; Ehsani, N.; Baharvandi, H. R. High-porosity closed-cell aluminum foams produced by melting method without stabilizer particles. International Journal of Metalcasting, 2021, 15: 899-905. [35] Ghaleh, M. Heidari; Ehsani, N.; Baharvandi, H. R. High-porosity closed-cell aluminum foams produced by melting method without stabilizer particles. International Journal of Metalcasting, 2021, 15: 899-905. [36] Byavoka, Aleksandra V., et al. The role of foaming agent in structure and mechanical performance of Al based foams. Materials transactions, 2006, 47.9: 2131-2136 [37] Kevorkijan, Varužan. Lowcost aluminium foams made by CaCO3 particulates. Association of Metallurgical Engineers of Serbia, 2010, 16.3: 205-219. [38] Kovacik, Jaroslav, et al. Closed cell aluminium foams with phase change material. Metallic foams, 2017, 1.1: 42-48. [39] Raut, Shashikant V.; Kanthale, V.; Kothavale, B. Review on application of aluminum foam in sound absorption technology. International Journal of Current Engineering and Technology, Special, 2016, 4: 178-181. [40] Lu, Tiara J.; Hess, Audrey; Ashby, M. F. Sound absorption in metallic foams. Journal of applied physics, 1999, 85.11: 7528-7539. [41] Doelle, L.L. Akustik Lingkungan (terjemahan Lea Prasetyo). Jakarta. Penerbit Erlangga. 1993. [42] Banhart, John; Seeliger, H.‐W. Aluminium foam sandwich panels: manufacture, metallurgy and applications. Advanced Engineering Materials, 2008, 10.9: 793-802. [43] C. E. Jimenez, "Characterization and modification of powders used to make aluminium-based metal foams," J. Adv. Powder Metall. Stud., vol. 12, no. 3, pp. 45–67, 2010. [44] Islam, M. A., et al. Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams. Materials Science and Engineering: A, 2016, 666: 245-256. [45] Pratapa, S., et al. Xrd line‐broadening characteristics of M‐oxides (M= Mg, Mg‐Al, Y, Fe) nanoparticles produced by coprecipitation method. In: AIP Conference Proceedings. American Institute of Physics, 2010. p. 125-128. [46] ASTM C373-88. ASTM C373-14 Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products. Astm C373-88, 88(Reapproved), 2006. 1–2. https://doi.org/10.1520/C0373-88R06.edges [47] Arunkumar, M. P., et al. Sound radiation and transmission loss characteristics of a honeycomb sandwich panel with composite facings: effect of inherent material damping. Journal of Sound and Vibration, 2016, 383: 221-232. [48] Badida, M.; Liptai, P. Aluminium foam and its acoustic properties. European Journal of Environmental and Safety Sciences, 3 (1), 2015, 5-10. [49] Berardi, Umberto; Iannace, Gino. Predicting the sound absorption of natural materials: Best-fit inverse laws for the acoustic impedance and the propagation constant. Applied Acoustics, 2017, 115: 131-138. [50] Carvalho, António Pedro O. Acoustical behavior of a new lightweight partition made with gypsum board and cork. The Journal of the Acoustical Society of America, 1995, 98.5: 2879. [51] A. Arjunan, A. Baroutaji, A. S. Praveen, A. G. Olabi, dan C. J. Wang, "Acoustic performance of metallic foams," dalam Reference Module in Materials Science and Materials Engineering, S. Hashmi, Ed. Elsevier, 2019. [52] Pradana, M. Aditya; Ardhyananta, Eng Hosta. Analisa Koefisien Serap Suara dan Penyerapan Gelombang Mikro Komposit Silicone Rubber Berpenguat Barium Heksaferrit Dopping Zn dan Serat Mikro Tandan Kosong Kelapa Sawit. Laporan Akhir Proyek Akhir, 2017. [53] Berendt, Raymond D.; Corliss, Edith LR; Ojalvo, Morris S. Quieting: A practical guide to noise control. US Department of Commerce, National Bureau of Standards, 1976. [54] F. Said, “Pengaruh Variasi Ketebalan Sampel Dan Penambahan Foaming Agent CaCO3 Dari Limbah Kulit Telur Terhadap Kemampuan Absorbsi Suara Pada Aluminium Foam,” Skripsi Teknik metalurgi, 2024. [55] V. Thulasikanth, “Fabrication of sustainable closed-cell aluminium foams using recycled fly ash and eggshell powder,” MaterialsToday, vol. 37, p. 107302, 2023. [56] P. Kumar, “Effect of Grain Size of Calcium Carbonate Foaming Agent on Compressive Strength of Eutectic Al-Si Alloy Closed Cell Foam,” American Journal of Material Science, pp. 69-73, 2015. [57] I. Erlandi, “Pengaruh Penambahan CaCO3 dari Limah Kulit Telur dan Waktu Pengadukan Pada Pembuatan Aluminium Foam Menggunakan Metode Melt Route,” Skripsi Jurusan Teknik Metalurgi, p. 49, 202. citation: MAULANA, EDWIN (2025) PENGARUH WAKTU PENGADUKAN DAN UKURAN FOAMING AGENT CaCO3 MENGGUNAKAN LIMBAH KULIT TELUR TERHADAP KEMAMPUAN ABSORBSI SUARA PADA ALUMINIUM FOAM. S1 thesis, FAKULTAS TEKNIK UNIVERSITAS SULTAN AGENG TIRTAYASA. document_url: https://eprints.untirta.ac.id/53063/2/EDWIN%20MAULANA_3334190016_01.pdf document_url: https://eprints.untirta.ac.id/53063/3/Edwin%20Maulana_3334190016_02.pdf document_url: https://eprints.untirta.ac.id/53063/4/Edwin%20Maulana_3334190016_03.pdf document_url: https://eprints.untirta.ac.id/53063/5/Edwin%20Maulana_3334190016_04.pdf document_url: https://eprints.untirta.ac.id/53063/6/Edwin%20Maulana_3334190016_05.pdf document_url: https://eprints.untirta.ac.id/53063/7/Edwin%20Maulana_3334190016_Ref.pdf document_url: https://eprints.untirta.ac.id/53063/8/Edwin%20Maulana_3334190016_Lamp.pdf document_url: https://eprints.untirta.ac.id/53063/9/Edwin%20Maulana_3334190016_CP.pdf document_url: https://eprints.untirta.ac.id/53063/19/Edwin%20Maulana_3334190016_FullText.pdf