eprintid: 52836 rev_number: 34 eprint_status: archive userid: 17433 dir: disk0/00/05/28/36 datestamp: 2025-07-29 04:52:29 lastmod: 2025-07-29 04:52:29 status_changed: 2025-07-29 04:52:29 type: thesis metadata_visibility: show contact_email: 3337210063@untirta.ac.id creators_name: SEPTIANA, A'IDAH EKA creators_id: 3337210063 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: SANTOSO, MUHAMMAD IMAN contributors_name: SUKARNA, ROYAN HABIBIE contributors_id: 197701302003121007 contributors_id: 199204222022031006 corp_creators: UNIVERSITAS SULTAN AGENG TIRTAYASA corp_creators: FAKULTAS TEKNIK corp_creators: PROGRAM STUDI INFORMATIKA title: OPTIMALISASI PROSES KADERISASI DI PERUSAHAAN XYZ DENGAN MEMAHAMI PERSEBARAN DATA KARYAWAN MENGGUNAKAN ALGORITMA FUZZY C-MEANS ispublished: pub subjects: QA76 divisions: FT divisions: TKI full_text_status: restricted keywords: Kaderisasi Karyawan, Fuzzy C-Means, Silhouette Score, Fuzzy Partition Coefficient, Xie-Beni Index note: Proses kaderisasi merupakan aspek utama dalam pengembangan Sumber Daya Manusia (SDM) di perusahaan. Penelitian ini bertujuan untuk mengelompokkan karyawan berdasarkan karakteristik tertentu dengan mengimplementasikan algoritma Fuzzy C-Means (FCM) guna mendukung pengambilan keputusan berbasis data dalam proses kaderisasi. FCM dipilih karena kemampuannya dalam menangani data yang memiliki kemiripan antar cluster melalui derajat keanggotaan. Dataset yang digunakan mencakup variabel department, region, education, gender, recruitment channel, no of trainings, age, previous year rating, length of service, KPIs met more than 80, awards won, dan average training score. Pendekatan utama dalam penelitian ini menggunakan seluruh fitur dalam analisis clustering agar informasi yang didapatkan mencakup seluruh informasi yang relevan dengan karyawan. Sebagai pembanding, dilakukan juga analisis menggunakan feature selection yang menunjukkan peningkatan nilai evaluasi cluster, ditunjukkan dengan meningkatnya nilai Silhouette Score dari 0.7934 menjadi 0.8634 dan Fuzzy Partition Coefficient (FPC) dari 0.8918 menjadi 0.9347, serta penurunan Xie-Beni Index (XBI) dari 0.0222 menjadi 0.0194. Meskipun demikian, penggunaan feature selection mengurangi keluasan informasi yang diperoleh dari hasil clustering karena terbatasnya fitur yang digunakan, sehingga perlu dipertimbangkan dalam mengimplementasikannya. Berdasarkan hasil akhir clustering dengan menggunakan seluruh fitur, didapatkan cluster optimal saat berjumlah 4 cluster yang merepresentasikan cluster karyawan dengan karakteristik yang berbeda. Hal tersebut dapat digunakan dalam menyusun strategi kaderisasi yang tepat, efektif, dan berbasis data. abstract: The cadre development process is a key aspect of human resource (HR) development in companies. This study aims to group employees based on specific characteristics by implementing the Fuzzy C-Means (FCM) algorithm to support data-driven decision making in the cadre development process. FCM was chosen for its ability to handle data with similarities between clusters through membership degrees. The dataset used includes variables such as department, region, education, gender, recruitment channel, number of trainings, age, previous year rating, length of service, KPIs met more than 80, awards won, and average training score. The main approach in this study uses all features in the clustering analysis to ensure that the information obtained covers all information relevant to employees. As a comparison, an analysis using feature selection was also conducted, showing an improvement in cluster evaluation values, as indicated by an increase in the Silhouette Score from 0.7934 to 0.8634 and the Fuzzy Partition Coefficient (FPC) from 0.8918 to 0. 9347, as well as a decrease in the Xie-Beni Index (XBI) from 0.0222 to 0.0194. However, the use of feature selection reduces the breadth of information obtained from the clustering results due to the limited features used, so this should be considered when implementing it. Based on the final clustering results using all features, the optimal number of clusters was found to be 4, representing employee clusters with distinct characteristics. This can be used to develop appropriate, effective, and data-driven employee development strategies. date: 2025-07-28 date_type: published pages: 92 institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: INFORMATIKA thesis_type: sarjana thesis_name: sarjana referencetext: [1] V. G. M, A. C. Lay, A. T. H. Hardini, and B. A. Rizky, “Pentingnya Perencanaan Sumber Daya Manusia Dalam Sebuah Organisasi,” J. Bintang Manaj., vol. 2, no. 2, pp. 144–155, 2024. [2] A. Rosmajudi, “Strategi Efektif dalam Manajemen Sumber Daya Manusia: Mengoptimalkan Potensi Karyawan untuk Keunggulan Organisasi,” Attract. Innov. Educ. J., vol. 5, no. 2, pp. 641–652, 2023. [3] Khaeruman and Tabroni, “Strategi Efektif Manajemen Sumber Daya Manusia dalam Meningkatkan Kinerja Karyawan di Era Bisnis Modern,” EKOMA J. Ekon. Manajemen, Akutansi, vol. 3, no. 2, pp. 552–560, 2024. [Online]. Available: https://nusantara.com/index.php/EKOMA/article/view/2789/2308 [4] M. Saifullah, D. C. Abdullah, and N. Ariani, “Kinerja Bendahara dalam Akuntabilitas Pelaporan Keuangan pada Bidang Humas di Kepolisian Daerah Sulawesi Tengah,” J. Manag. Sci., vol. 5, no. 1, pp. 15–22, 2025. [Online]. [5] A. Firman and N. Inrawati, “The Impact of the Recruitment Process on Employee Performance,” Adv. Hum. Resour. Manag. Res., vol. 1, no. 2, pp. 55–65, 2023, doi: 10.60079/ahrmr.v1i2.75. [6] I. S. Baron, M. Musthafa, and H. Agustina, “The Challenges of Recruitment and Selection Systems in Indonesia,” GATR J. Manag. Mark. Rev., vol. 3, no. 4, pp. 185–192, 2018, doi: 10.35609/jmmr.2018.3.4(2). [7] O. Omogbiya and G. A. Addah, “Challenges and Effects of Poor Recruitment and Selection Process in Nigerian Workplace Oghenenyerhowvo,” Indones. J. Digit. Bus., vol. 3, Aug. 2022, pp. 1–8. [8] M. N. Huda, “Optimalisasi Manajemen SDM dalam Meningkatkan Sistem Pengkaderan,” Ta’dibi J. Manaj. Pendidik. Islam, vol. X, no. 2, pp. 52–72, 2022. [Online]. Available: https://jurnal.stail.ac.id/index.php/tadibi/article/view/408 [9] A. Kiswantoro et al., “Review Dampak dan Tantangan dalam Penerapan HR Analytics untuk Meningkatkan Performa Perusahaan,” Ideas J. Pendidikan, Sos. dan Budaya, vol. 9, no. 4, p. 1103, 2023, doi: 10.32884/ideas.v9i4.1519. [10] S. Nurwahidah, A. M. Ramdan, and F. M. Z, “Analisis Gaya Kepemimpinan Demokratis dan Kaderisasi Kepemimpinan terhadap Kinerja Karyawan,” Perform. J. Bisnis Akunt., vol. 13, no. 2, pp. 128–139, 2023, doi: 10.24929/feb.v13i2.2574. [11] R. Kurniawan, Manajemen Sumber Daya Manusia pada Kaderisasi Anggota Ansor, vol. 1, no. 69, 2022. [12] K. Islah, “Proses Kaderisasi Pembentukan Generasi Milenial Cendekia yang Berjiwa Agile Leadership pada Organisasi di Era 4.0,” Kebijak. J. Ilmu Adm., vol. 13, no. 2, pp. 118–128, 2022, doi: 10.23969/kebijakan.v13i2.5276. [13] Nurinaya and S. Marhumi, “Leadership Strategy Evaluation and Succession Planning in Preparing the Company’s Future Leaders,” Advances in Human Resource Management Research, vol. 3, no. 1, pp. 1–14, 2025. [14] F. M. Savitri, A. U. Hasanah, A. M. Fasa, and S. L. Mahesti, “Kajian Literatur Perencanaan Sumber Daya Manusia (SDM) yang Efektif untuk Meraih Keunggulan Kompetitif,” CEMERLANG J. Manaj. dan Ekon. Bisnis, vol. 2, no. 1, pp. 16–29, 2022, doi: 10.55606/cemerlang.v2i1.607. [15] E. Kurniawati, “Perencanaan Sumber Daya Manusia pada PT ABC,” JMK (J. Manaj. dan Kewirausahaan), vol. 7, no. 2, pp. 60–67, 2022, doi: 10.32503/jmk.v7i2.2513. [16] Ifadhila et al., Strategi Perencanaan Sumber Daya Manusia: Mengelola dan Menetapkan SDM yang Berkualitas, no. September. Jambi: PT. Sonpedia Publishing Indonesia Redaksi, 2023. [17] A. Handayani and A. E. Sarwono, “Pengembangan Keunggulan Kompetitif sebagai Strategi Peningkatan Kinerja Organisasi Berkelanjutan,” J. Manaj. dan Penelit. Akunt., vol. 16, no. 2, pp. 137–146, 2023. [18] Darmadi, “Strategi Manajemen Sumber Daya Manusia dalam Meningkatkan Keunggulan Kompetitif,” JOTIKA J. Manag. Entrep., vol. 2, no. 1, pp. 45–50, 2022, doi: 10.56445/jme.v2i1.52. [19] R. N. Turrahma, A. N. Caesario, M. D. Alfajri, R. Gusmanto, and W. K. Oktoeberza, “Implementasi Fuzzy C-Means untuk Clustering Data Harga Saham Harian pada PT. Astra International Tbk,” J. Rekursif, vol. 11, pp. 64–69, 2023. [Online]. Available: https://ejournal.unib.ac.id/rekursif/article/view/27167/12023 [20] N. I. Kalla, S. Annas, and M. Fahmuddin, “Metode Subtractive Fuzzy C-Means (SFCM) dalam Pengelompokan Kabupaten/Kota di Provinsi Sulawesi Selatan Berdasarkan Indikator Kemiskinan,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 4, no. 2, pp. 95–108, 2022, doi: 10.35580/variansiunm25. [21] F. S. D. Arianto, A. Wibowo, and B. Surarso, “Modifikasi Metode Fuzzy C-Means untuk Klasifikasi Citra Daun Padi,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 17, no. 1, pp. 22–29, 2022, doi: 10.30872/jim.v17i1.6068. [22] A. Yudhistiraa, A. A. Aldino, and D. Darwis, “Analisis Klasterisasi Penilaian Kinerja Pegawai Menggunakan Metode Fuzzy C-Means (Studi Kasus: Pengadilan Tinggi Agama Bandar Lampung),” J. Ilm. Edutic Pendidik. dan Inform., vol. 9, no. 1, pp. 77–82, 2022, doi: 10.21107/edutic.v9i1.17134. [23] J. C. Lapendy, A. A. C. Resky, and D. F. Surianto, “Analisis Metode Fuzzy C-Means (FCM) dalam Menentukan Performansi Kinerja Karyawan,” J. Telekomun. Elektron. Komputasi, dan Kontrol, vol. 11, no. 1, 2025. [24] Martin and Y. Nataliani, “Klasterisasi Kinerja Karyawan Menggunakan Algoritma Fuzzy C-Means,” AITI J. Teknol. Inf., vol. 17, no. 2, pp. 118–129, 2020, doi: 10.24246/aiti.v17i2.118-129. [25] N. Rakhmawaty, Y. N. Nasution, and F. D. T. Amijaya, “Perbandingan Metode K-Means dan Metode Fuzzy C-Means (FCM) pada Analisis Kinerja Pegawai PT. Cemara Khatulistiwa Persada Bontang,” Eksponensial, vol. 13, no. 1, p. 63, 2022, doi: 10.30872/eksponensial.v13i1.886. [26] A. Rizal, D. C. R. Novitasari, and M. Hafiyusholeh, “Pengelompokan Karyawan Berdasarkan Kesalehan Menggunakan Perbandingan Fuzzy C-Means, K-Means, dan Probabilistic Distance Clustering,” J. Fourier, vol. 11, no. 2, pp. 69–77, 2022, doi: 10.14421/fourier.2022.112.69-77. [27] P. R. Nastiti and A. B. W. Putra, “Perbandingan Algoritma K-Means dan Fuzzy C-Means Clustering untuk Kualifikasi Data Kinerja Dosen di Jurusan Teknologi Informasi POLNES,” in Prosiding SNSebatik 2017 (Seminar Nasional Serba Informatika), 2017, pp. 71–76. [28] A. E. Pramitasari and Y. Nataliani, “Perbandingan Clustering Karyawan Berdasarkan Nilai Kinerja dengan Algoritma K-Means dan Fuzzy C-Means,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 3, pp. 1119–1132, 2021, doi: 10.35957/jatisi.v8i3.957. [29] N. Agustina and P. Prihandoko, “Perbandingan Algoritma K-Means dengan Fuzzy C-Means untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 3, pp. 621–626, 2018, doi: 10.29207/resti.v2i3.492. [30] M. Mellyadi and P. Harliana, “Segmentasi Citra Satelit dalam Observasi dan Konservasi Hutan Lindung Taman Nasional Gunung Lauser Menggunakan Algoritma Fuzzy C-Means,” J. Ilmu Komput., vol. 1, no. 2, pp. 90–96, 2022, doi: 10.56211/helloworld.v1i2.44. [31] I. J. Panjaitan, Indahwati, and F. M. Afendi, “The Implementation of the Fuzzy C-Means Method in Handling Outlier Data in the 2021 Village Potential Data of Bengkulu Province,” ComTech, vol. 16, no. June, pp. 23–34, 2025, doi: 10.21512/comtech.v16i1.12274. [32] B. Choudhary and V. Saxena, “Fuzzy C-Mean Technique for Accessing Large Database of Banking Sector,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 4, pp. 263–271, 2023. [33] E. Y. Ahmadov, “Comparative Analysis of K-Means and Fuzzy C-Means Algorithms on Demographic Data Using the PCA Method,” Probl. Inf. Technol., vol. 14, no. 1, pp. 15–22, 2023, doi: 10.25045/jpit.v14.i1.03. [34] W. B. Syamhuri, M. T. Furqon, and C. Dewi, “Pengelompokan Film Berdasarkan Alur Cerita Menggunakan Metode Self Organizing Maps dan Silhouette Coefficient,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 12, pp. 5898–5904, 2022. [Online]. Available: http://j-ptiik.ub.ac.id [35] Adriyanti, F. Latief, and S. Bahasoan, “Pengaruh Gaya Kepemimpinan dan Motivasi Kerja terhadap Kinerja Karyawan pada Bank Sulselbar Cabang Jeneponto,” J. Manaj. dan Akuntansi, vol. 1, no. 1, pp. 1–13, 2023, doi: 10.58191/jomel.v1i1.16. [36] E. Kaputri, F. Lukita, J. Onesis, Juliana, and A. Pramezwary, “Leadership Style and Employee Motivation: Unveiling the Key to Productivity in Fast-Food Restaurants,” vol. 9, no. 1, pp. 22–36, 2025. [37] R. Rostini, Syahribulan, A. Razak, N. A. Yasin, and Arjan, “Training and Development Memprediksi Perubahan Kinerja Karyawan,” JPPI (J. Penelit. Pendidik. Indones.), vol. 9, no. 1, pp. 466–470, 2023, doi: 10.29210/020221763. [38] R. R. Alsyaibany, “The Evaluation of Effectiveness on Education and Training Program,” J. Educ. Learn. Stud., vol. 2, no. 1, p. 56, 2019, doi: 10.32698/0662. [39] M. Ramdhan, Perencanaan & Pengembangan SDM, I. Malang: PT. Literasi Nusantara Abadi Grup, 2023. [40] Susilo and O. P. Winarto, “The Influence of Succession Planning on Organizational Sustainability,” Scaffolding J. Pendidik. Islam dan Multikulturalisme, vol. 5, no. 3, pp. 490–518, 2023, doi: 10.37680/scaffolding.v5i3.3448. [41] N. Handayani, H. F. Humaira, J. Firnando, J. B., A. Suhendra, and D. A. Malik, “Model Kirkpatrick sebagai Metode Mengukur Hasil Pelatihan Responsibility dalam Berorganisasi,” Plakat J. Pelayanan Kpd. Masy., vol. 6, no. 1, p. 51, 2024, doi: 10.30872/plakat.v6i1.13218. [42] D. Monari, “Competency Mapping and Its Influence on Employee Retention in the Telecommunication Industry in Kenya,” Int. J. Educ. Res., vol. 9, no. 7, pp. 37–48, 2021. [Online]. Available: https://www.ijern.com/journal/2021/July2021/04.pdf [43] D. P. Mopur, “A Study on Competency Mapping Factor in Faurecia Emissions Control Technologies India Pvt Ltd,” Int. J. Multidiscip. Res., vol. 6, no. 2, 2024, doi: 10.36948/ijfmr.2024.v06i02.18495. [44] D. Mdhlalose, “The Systematic Review of Effective Performance Management Systems in Organizations,” J. Apl. Manaj., vol. 21, no. 2, pp. 319–330, 2023, doi: 10.21776/ub.jam.2023.021.02.04. citation: SEPTIANA, A'IDAH EKA (2025) OPTIMALISASI PROSES KADERISASI DI PERUSAHAAN XYZ DENGAN MEMAHAMI PERSEBARAN DATA KARYAWAN MENGGUNAKAN ALGORITMA FUZZY C-MEANS. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/52836/1/A%27idah%20Eka%20Septiana_3337210063_Fulltext.pdf document_url: https://eprints.untirta.ac.id/52836/2/A%27idah%20Eka%20Septiana_3337210063_01.pdf document_url: https://eprints.untirta.ac.id/52836/3/A%27idah%20Eka%20Septiana_3337210063_02.pdf document_url: https://eprints.untirta.ac.id/52836/4/A%27idah%20Eka%20Septiana_3337210063_03.pdf document_url: https://eprints.untirta.ac.id/52836/5/A%27idah%20Eka%20Septiana_3337210063_04.pdf document_url: https://eprints.untirta.ac.id/52836/6/A%27idah%20Eka%20Septiana_3337210063_05.pdf document_url: https://eprints.untirta.ac.id/52836/7/A%27idah%20Eka%20Septiana_3337210063_Ref.pdf document_url: https://eprints.untirta.ac.id/52836/8/A%27idah%20Eka%20Septiana_3337210063_Lamp.pdf document_url: https://eprints.untirta.ac.id/52836/9/A%27idah%20Eka%20Septiana_3337210063_CP.pdf