eprintid: 52764 rev_number: 25 eprint_status: archive userid: 1164 dir: disk0/00/05/27/64 datestamp: 2025-07-28 02:25:40 lastmod: 2025-07-28 02:25:40 status_changed: 2025-07-28 02:25:40 type: thesis metadata_visibility: show contact_email: adha222003@gmail.com creators_name: Aldiyansyah, Adha creators_id: 3332210034 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Muttakin, Imamul contributors_name: Masjudin, Masjudin contributors_id: 198705262014041001 contributors_id: 198312312019031018 corp_creators: Universitas Sultan Ageng Tirtayasa corp_creators: Fakultan Teknik corp_creators: Jurusan Teknik Elektro title: Prototipe Sistem Penyaringan dan Pengukuran Asap Pembakaran Sampah Pada Mini Insinerator ispublished: pub subjects: T1 subjects: TD subjects: TK divisions: Elektro full_text_status: restricted keywords: Pembakaran sampah, Polusi udara, Penyaring asap abstract: Pengelolaan sampah dengan cara dibakar merupakan pengelolaan sampah yang paling banyak dilakukan masyarakat. Saat pembakaran sampah berlangsung, terdapat gas emisi serta residu yang berbentuk abu dihasilkan, selain itu asap yang dihasilkan dari pembakaran sampah berpotensi meningkatkan polusi udara. Polusi yang terkandung dalam asap pembakaran sampah berupa zat nitrogen oksida, karbon monoksida, serta partikel polusi. Jumlah polusi udara yang diakibatkan dari pembakaran sampah dapat dikurangi kadarnya dengan mengolah asap hasil pembakaran sebelum dibuang seutuhnya ke lingkungan sekitar dengan melakukan penyaringan asap dari pembakaran sampah. Tujuan dari penelitian ini adalah untuk menguji efektivitas alat penyaringan asap dalam menyaring zat polutan yang terkandung dalam asap pembakaran sampah serta mengevaluasi performa alat agar dapat menjadi solusi inovatif dalam mengurangi polusi udara yang dihasilkan dalam pembakaran sampah. Zat polutan yang terkandung dalam asap diukur kadarnya dengan menggunakan sensor MQ-7, sensor MQ-135, dan sensor GP2Y1010AU0F. Hasil yang ditunjukkan pada penyaringan asap pada filter ketiga mampu mengurangi zat polutan dengan baik dengan kadar gas karbon monoksida berada di bawah 5 PPM, gas karbon dioksida berada di bawah 350 PPM, dan kadar PM2.5 berada di bawah 11 µg/m^3. date: 2025-06-05 date_type: published pages: 84 institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: Teknik Elektro thesis_type: sarjana thesis_name: sarjana referencetext: [1] Kaza, S., L. Yao, P. Bhada Tata, F. Van Woerden, T. M. R. Martin, K. R. B. Serrona, R. Thakur, F. Pop, S. Hayashi, G. Solorzano, N. S. Alencastro Larios, R. A. Poveda, and A. Ismail, “What a Waste 2.0 : A Global Snapshot of Solid Waste Management to 2050,” World Bank Group, Washington, D.C., Publication 132827, April 2021. Accessed: September 05, 2024. [Online]. Available: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/697271544470229584/What-a-Waste-2-0-A-Global-Snapshot-of-Solid-Waste-Management-to-2050 [2] Anonim, “Plastic Waste Discharges from Rivers and Coastlines in Indonesia,” World Bank, Washington, D.C., Publication, May 2021. Accessed: July 20, 2024. [Online]. Available: https://www.worldbank.org/en/country/indonesia/publication/plastic-waste-discharges-from-rivers-and-coastlines-in-indonesia [3] Anonim, “Membenahi Tata Kelola Sampah Nasional,” Indonesia.go.id. Accessed: September 28, 2024. [Online]. Available: https://indonesia.go.id/kategori/indonesia-dalam-angka/2533/membenahi-tata-kelola-sampah-nasional [4] Mustaghfiroh, U., L. K. Ni’mah, A. Sundusiyah, H. A. Addahlawi, and A. F. Hidayatullah, “Implementasi Prinsip Good Environmental Governance dalam Pengelolaan Sampah Di Indonesia,” Bina Hukum Lingkungan, vol. 4, no. 2, pp. 279–291, 2020, doi: http://dx.doi.org/10.24970/bhl.v4i2.106. [5] Anonim, “Kajian Kebijakan dan Strategi Nasional Percepatan Pengeloalan Persampahan,” Kementerian Koordinator Bidang Perekonomian Republik Indonesia, PT. Arkonin Engineering Manggala Pratama, 2016. [Online]. Available: https://www.ekon.go.id/source/publikasi/Kajian%20Kebijakan%20dan%20Strategi%20Nasional%20Percepatan%20Pengelolaan%20Persampahan.pdf [6] Andreansyah and O. Sihite, “Potret Manusia dan Sampah Di Medan dalam Karya Fotografi Konseptual,” Cendikia: Jurnal Pendidikan dan Pengajaran, vol. 2, no. 3, pp. 12–36, 2024, doi: https://doi.org/10.572349/cendikia.v2i3.964. [7] Rendi, A. Jainal, F. Herlina, S. Ihsan, B. Hartadi, M. Suprapto, and M. Irfansyah, “Edukasi Pengelolaan Sampah dan Pendampingan Penggunaan Mesin Pembakaran Sampah Di Desa Semangat Dalam,” Jurnal Pengabdian Al-Ikhlas, vol. 7, no. 1, pp. 139–144, 2021. [8] Jakhar, R., L. Samek, and K. Styszko, “A Comprehensive Study of the Impact of Waste Fires on the Environment and Health,” Sustainability, vol. 15, no. 19, p. 14241, January 2023, doi: 10.3390/su151914241. [9] Han, S., J. Kim, and S. H. Ko, “Advances in air filtration technologies: structure-based and interaction-based approaches,” Materials Today Advances, vol. 9, p. 100134, March 2021, doi: 10.1016/j.mtadv.2021.100134. [10] de Almeida, D. S., L. D. Martins, and M. L. Aguiar, “Air pollution control for indoor environments using nanofiber filters: A brief review and post-pandemic perspectives,” Chemical Engineering Journal Advances, vol. 11, p. 100330, August 2022, doi: 10.1016/j.ceja.2022.100330. [11] Rana, A. K., E. Mostafavi, W. F. Alsanie, S. S. Siwal, and V. K. Thakur, “Cellulose-based materials for air purification: A review,” Industrial Crops and Products, vol. 194, p. 116331, April 2023, doi: 10.1016/j.indcrop.2023.116331. [12] Qian, H., Y. Fang, K. Wu, H. Wang, B. Li, and F. Jiang, “Air filtration improvement of konjac glucomannan-based aerogel air filters through physical structure design,” International Journal of Low-Carbon Technologies, vol. 16, no. 3, pp. 867–872, September 2021, doi: 10.1093/ijlct/ctab011. [13] Anitha, M. and L. S. Kumar, “Development of an IoT-Enabled Air Pollution Monitoring and Air Purifier System,” MAPAN, vol. 38, no. 3, pp. 669–688, September 2023, doi: 10.1007/s12647-023-00660-y. [14] Hananta, M. O., D. L. Antonia, Y. Yuliati, and L. Agustine, “Alat Pendeteksi, Penghisap dan Penyaring Asap Rokok,” Widya Teknik, vol. 21, no. 1, pp. 51–55, May 2022, doi: 10.33508/wt.v21i1.4204. [15] Mourya, R. and V. Rathee, “Arduino based Air Monitoring and Filtration System,” International Research Journal of Engineering and Technology, vol. 09, no. 04, pp. 3595–3600, 2022. [16] Ramadan, B. S., I. Rachman, N. Ikhlas, S. B. Kurniawan, M. F. Miftahadi, and T. Matsumoto, “A comprehensive review of domestic-open waste burning: recent trends, methodology comparison, and factors assessment,” Journal of Material Cycles and Waste Management, vol. 24, no. 5, pp. 1633–1647, September 2022, doi: 10.1007/s10163-022-01430-9. [17] Pathak, G., M. Nichter, A. Hardon, and E. Moyer, “The Open Burning of Plastic Wastes is an Urgent Global Health Issue,” Annals of Global Health, vol. 90, no. 1, p. 3, doi: 10.5334/aogh.4232. [18] Gómez-Sanabria, A., G. Kiesewetter, Z. Klimont, W. Schoepp, and H. Haberl, “Potential for future reductions of global GHG and air pollutants from circular waste management systems,” Nature Communications, vol. 13, no. 1, p. 106, January 2022, doi: 10.1038/s41467-021-27624-7. [19] Naryanti, R. F., Teknik Pembakaran. Malang: Literasi Nusantara, 2021. [20] Sutherland, K. S. and G. Chase, Filters and Filtration Handbook (Fifth edition), Fifth edition. Oxford: Elsevier, 2007. [21] Sparks, T. and G. Chase, Filters and Filtration Handbook (Sixth Edition), Sixth Edition. Oxford: Elsevier Science, 2015. [22] Wahyuningtyas, D. T., S. Sudarti, and Y. Yushardi, “Mekanisme Kinerja Air Purifier Dalam Upaya Pencegahan Polusi Udara,” SAINTIFIK, vol. 10, no. 1, Art. no. 1, February 2024, doi: 10.31605/saintifik.v10i1.474. [23] Ahmad, J., A. Majdi, A. Al-Fakih, A. F. Deifalla, F. Althoey, M. H. El Ouni, and M. A. El-Shorbagy, “Mechanical and Durability Performance of Coconut Fiber Reinforced Concrete: A State-of-the-Art Review,” Materials, vol. 15, no. 10, p. 3601, January 2022, doi: 10.3390/ma15103601. [24] Ananda, R., “Pemanfaatan Serat Kelapa Sebagai Alternatif Pengganti Kemasan Berbahan Plastik,” Jurnal Seni dan Reka Rancang: Jurnal Ilmiah Magister Desain, vol. 2, no. 1, pp. 1–14, 2019, doi: 10.25105/jsrr.v2i1.10103. [25] Ariatma, A. A., A. Kadir, and F. Fahruddin, “Pemanfaatan Limbah Serabut Kelapa Di Desa Korleko Kecamatan Labuhan Haji Kabupaten Lombok Timur,” Jurnal Warta Desa, vol. 1, no. 3, 2019, doi: 10.29303/jwd.v1i3.81. [26] Sari, R. M., S. Gea, B. Wirjosentono, S. Hendrana, and F. G. Torres, “The effectiveness of coconut coir as tar adsorbent in liquid smoke integrated into the pyrolysis reactor,” Case Studies in Thermal Engineering, vol. 25, p. 100907, June 2021, doi: 10.1016/j.csite.2021.100907. [27] Vieira, F., H. E. P. Santana, M. Jesus, J. Santos, P. Pires, M. Vaz-Velho, D. P. Silva, and D. S. Ruzene, “Coconut Waste: Discovering Sustainable Approaches to Advance a Circular Economy,” Sustainability, vol. 16, no. 7, p. 3066, January 2024, doi: 10.3390/su16073066. [28] Esfandiar, N., R. Suri, and E. R. McKenzie, “Simultaneous removal of multiple polycyclic aromatic hydrocarbons (PAHs) from urban stormwater using low-cost agricultural/industrial byproducts as sorbents,” Chemosphere, vol. 274, p. 129812, July 2021, doi: 10.1016/j.chemosphere.2021.129812. [29] Li, X., H. Han, N. Evangelou, N. J. Wichrowski, P. Lu, W. Xu, S.-J. Hwang, W. Zhao, C. Song, X. Guo, A. Bhan, I. G. Kevrekidis, and M. Tsapatsis, “Machine learning-assisted crystal engineering of a zeolite,” Nature Communications, vol. 14, no. 1, p. 3152, May 2023, doi: 10.1038/s41467-023-38738-5. [30] Chen, K., Z. Yu, S. H. Mousavi, R. Singh, Q. Gu, R. Q. Snurr, P. A. Webley, and G. K. Li, “Regulating adsorption performance of zeolites by pre-activation in electric fields,” Nature Communications, vol. 14, no. 1, p. 5479, September 2023, doi: 10.1038/s41467-023-41227-4. [31] Sudarni, S. and H. Haderiah, “Aktivasi Zeolit Dan Karbon Aktif Dalam Menurunkan Kesadahan Air Di Kampung Sapiriakota Makassar,” Sulolipu: Media Komunikasi Sivitas Akademika dan Masyarakat, vol. 20, no. 1, pp. 19–23, August 2020, doi: 10.32382/sulolipu.v20i1.1459. [32] Jjagwe, J., P. W. Olupot, E. Menya, and H. M. Kalibbala, “Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review,” Journal of Bioresources and Bioproducts, vol. 6, no. 4, pp. 292–322, November 2021, doi: 10.1016/j.jobab.2021.03.003. [33] Kalantar-zadeh, K., Sensors: An Introductory Course. Springer Science & Business Media, 2013. [34] Alegria, F. A. C., Sensors And Actuators. World Scientific, 2021. [35] Suharso, A. R., A. Hendartono, and S. Supriyadi, “Characteristics of the MQ-135 Sensor for Testing Medium Speed Ship Engine Exhaust Gases,” Advance Sustainable Science Engineering and Technology, vol. 6, no. 3, pp. 0240310–0240310, June 2024, doi: 10.26877/asset.v6i3.615. [36] Rombang, I. A., L. B. Setyawan, and G. Dewantoro, “Perancangan Prototipe Alat Deteksi Asap Rokok dengan Sistem Purifier Menggunakan Sensor MQ-135 dan MQ-2,” Techné : Jurnal Ilmiah Elektroteknika, vol. 21, no. 1, pp. 131–144, April 2022, doi: 10.31358/techne.v21i1.312. [37] Janitra, Y. A., A. Aditya, H. N. Hadi, D. A. P, and S. Widodo, “The Development of Automatic Cigarette Smoke Detection System Using TA12-100 and MQ-135 Sensors,” Jurnal Techno Nusa Mandiri, vol. 21, no. 1, pp. 29–36, April 2024, doi: 10.33480/techno.v21i1.5294. [38] Umbu, A. B. S., “Analisis Grafik Karakteristik Sensitivitas Sensor MQ-135 untuk Menentukan Persamaan Hubungan antara ppm dan Rs/Ro,” Jurnal Teori dan Aplikasi Fisika, vol. 11, no. 02, pp. 49–60, July 2023, doi: 10.23960/2Fjtaf.v11i2.6656. [39] Neamah, F., M. Intisar, Z. Khyioon, and E. Abud, “Capable of Gas Sensor MQ-135 to Monitor the Air Quality with Arduino uno,” International Journal of Engineering Research and Technology, vol. 13, pp. 2955–2959, November 2020, doi: 10.37624/IJERT/13.10.2020.2955-2959. [40] Saputra, A. and Diana, “Design and Development of a Web-Based Air Quality Monitoring System Utilizing MQ-135 and Arduino,” POSITIF : Jurnal Sistem dan Teknologi Informasi, vol. 8, no. 2, pp. 91–97, 2022, doi: 10.31961/positif.v8i2.1414. [41] Kobbekaduwa, N., P. Oruthota, and W. R. de Mel, “Calibration and Implementation of Heat Cycle Requirement of MQ-7 Semiconductor Sensor for Detection of Carbon Monoxide Concentrations,” Advances in Technology, vol. 1, no. 2, pp. 377–392, September 2021, doi: 10.31357/ait.v1i2.5068. [42] Suryadi, K. and B. Fazzry, “Detection and Analysis of CO, CO2 Exhaust Emissions in Two-Wheeled Motorized Vehicles,” Protek : Jurnal Ilmiah Teknik Elektro, vol. 10, no. 3, pp. 132–136, September 2023, doi: 10.33387/protk.v10i3.4497. [43] Nurhasanah, Y. I., M. M. Barmawi, and R. Prakarsa, “Implementation of Mean of Maximum on Cigarette Smoke Control in a Room,” Electrotehnica, Electronica, Automatica, vol. 70, no. 3, pp. 59–68, September 2022, doi: 10.46904/eea.22.70.3.1108006. [44] Rajasekar, D., A. Sekar, and M. Rajasekar, “Air Quality Monitoring and Disease Prediction Using IoT and Machine Learning,” International Journal of Innovative Research in Computer Science & Technology, vol. 8, no. 6, pp. 389–395, November 2020. [45] Zidni, M., M. H. H. Ichsan, and S. R. Akbar, “Sistem Monitoring Kesehatan Udara menggunakan Sensor MQ7 dan MQ135 terhadap Berbagai Gas Berbahaya pada Mobil,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 6, no. 9, pp. 4322–4328, September 2022. [46] Sari, W. S. U., G. Priyandoko, and D. U. Effendy, “Rancang Bangun Sistem Monitoring Kualitas Udara Pada Ruang Isolasi Covid-19 Berbasis Android Menggunakan Sensor Sharp Gp2y1010au0f,” JASEE Journal of Application and Science on Electrical Engineering, vol. 3, no. 02, pp. 1–11, October 2022, doi: 10.31328/jasee.v3i02.204. [47] Gurudath, S. V., K. R. P. M, and S. K. G, “Framework and Method for Measurement of Particulate Matter Concentration using Low Cost Sensors,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 12, no. 12, pp. 854–859, 43/31 2021, doi: 10.14569/IJACSA.2021.01212103. [48] Bučar, K., J. Malet, L. Stabile, J. Pražnikar, S. Seeger, and M. Žitnik, “Statistics of a Sharp GP2Y Low-Cost Aerosol PM Sensor Output Signals,” Sensors, vol. 20, no. 23, p. 6707, January 2020, doi: 10.3390/s20236707. [49] Cho, H. and Y. Baek, “Practical Particulate Matter Sensing and Accurate Calibration System Using Low-Cost Commercial Sensors,” Sensors, vol. 21, no. 18, p. 6162, January 2021, doi: 10.3390/s21186162. [50] Iswan, I. and M. Mulyadi, “Sistem Pemantauan Debu Secara Real-Time Pada Daerah Pertambangan Batu Bara,” Journal of Computer System and Informatics (JoSYC), vol. 3, no. 4, Art. no. 4, September 2022, doi: 10.47065/josyc.v3i4.2018. [51] Siregar, R. F., A. Affandi, R. Rohana, A. R. Nasution, and I. Tanjung, “IoT Smart Control System: Smoke and Fire Detection Using SIM900A Module,” Journal of Electrical Technology UMY, vol. 7, no. 2, Art. no. 2, 2023, doi: 10.18196/jet.v7i2.19908. [52] Waworundeng, J. M. S., “Desain Sistem Deteksi Asap dan Api Berbasis Sensor, Mikrokontroler dan IoT,” CogITo Smart Journal, vol. 6, no. 1, Art. no. 1, July 2020, doi: 10.31154/cogito.v6i1.239.117-127. [53] Suhaeb, S., Y. A. Djawad, H. Jaya, Ridwansyah, Sabran, and A. Risal, Mikrokontroler dan Interface. Makassar, 2017. Accessed: October 13, 2024. [Online]. Available: https://reader5.z-library.sk/?source=469d3dff179ced4522e1cdaddfc609a684c7c17a98ed378108510b6b9541f11d [54] Irawan, Y., A. W. Novrianto, and H. Sallam, “Cigarette Smoke Detection And Cleaner Based On Internet Of Things (IoT) Using Arduino Microcontroller And MQ-2 Sensor,” Journal of Applied Engineering and Technological Science (JAETS), vol. 2, no. 2, pp. 85–93, May 2021, doi: 10.37385/jaets.v2i2.218. [55] Sofyan, A. and D. Kurniawan, “Indoor Air Monitoring and Filtration Using Arduino-Based Plasma Technology,” Journal of Technology Informatics and Engineering, vol. 2, no. 2, pp. 18–38, 2023, doi: 10.51903/jtie.v2i2.167. citation: Aldiyansyah, Adha (2025) Prototipe Sistem Penyaringan dan Pengukuran Asap Pembakaran Sampah Pada Mini Insinerator. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/52764/1/Adha%20Aldiyansyah_3332210034_FullText.pdf document_url: https://eprints.untirta.ac.id/52764/2/Adha%20Aldiyansyah_3332210034_01.pdf document_url: https://eprints.untirta.ac.id/52764/3/Adha%20Aldiyansyah_3332210034_02.pdf document_url: https://eprints.untirta.ac.id/52764/4/Adha%20Aldiyansyah_3332210034_03.pdf document_url: https://eprints.untirta.ac.id/52764/5/Adha%20Aldiyansyah_3332210034_04.pdf document_url: https://eprints.untirta.ac.id/52764/6/Adha%20Aldiyansyah_3332210034_05.pdf document_url: https://eprints.untirta.ac.id/52764/7/Adha%20Aldiyansyah_3332210034_Ref.pdf document_url: https://eprints.untirta.ac.id/52764/8/Adha%20Aldiyansyah_3332210034_Lamp.pdf document_url: https://eprints.untirta.ac.id/52764/9/Adha%20Aldiyansyah_3332210034_CP.pdf