@phdthesis{eprintuntirta52695, year = {2025}, note = {Pressure Vessel merupakan komponan vital dalam industri seperti minyak dan gas, pertrokimia dan pembangkit listrik, namun renta terhadap keretakan pada material. Penelitian ini bertujuan untuk menganalisi pengaruh variasi jenis material stainless steel (SS 316L, SS 301, SS 304 dan S17400/ 17-4 PH) dan ketebalan (6,35 mm, 9,525 mm dan 12,7 mm) terhadap risiko keretakan pada pressure vessel, serta menentukan kombinasi material dan ketebalan terbaik untuk meminimalkan potensi keretakan menggunakan Finite Element Method (FEM). Penelitian dilakukan melalui simulasi numerik menggunakan perangkat lunak ANSYS Mechanical dengan model Compact Tension berdasarkan standar ASTM E399. Parameter yang dianalisis meliputi tegangan normal ({\ensuremath{\sigma}}x, {\ensuremath{\sigma}}y, {\ensuremath{\sigma}}z), directional deformation (dx, dy, dz), retakan, stress intensity factor (SIFs K1). Simulasi dilakukan dengan menerapkan beban tarik proporsional untuk setiap ketebalan (3000 N untuk 6,35 mm, 4500 N untuk 9,525 mm, dan 6000 N untuk 12,7 mm). Terhadap ketahanan retakan mekanik hasil simulasi menunjukkan bahwa kombinasi material SS 301 dengan ketebalan 12,7 mm merupakan pilihan paling optimal untuk mencegah keretakan pada pressure vessel. SS 301 menawarkan ketahanan terbaik terhadap pertumbuhan retak karena Modulus Elastisitas tinggi dan deformasi rendah, sementara ketebalan 12,7 mm mendistribusikan beban secara lebih efektif, mengurangi tegangan, panjang retak dan laju pertumbuhan retak.}, school = {Fakultas Teknik Universitas Sultan Ageng Tirtayasa}, title = {ANALISIS KERETAKAN PADA MATERIAL PRESSURE VESSEL STAINLESS STEEL MENGGUNAKAN FINITE ELEMENT METHOD (FEM)}, month = {July}, author = {Akmal Mushoddaq}, abstract = {Pressure vessels are critical components in industries such as oil and gas, petrochemicals, and power generation; however, they are susceptible to material cracking. This study aims to analyze the effects of variations in stainless steel material types (SS 316L, SS 301, SS 304, and S17400/17-4 PH) and thicknesses (6.35 mm, 9.525 mm, and 12.7 mm) on the cracking risk of pressure vessels, as well as to determine the optimal material and thickness combination to minimize cracking potential using the Finite Element Method (FEM). The research was conducted through numerical simulations using ANSYS Mechanical software, employing a Compact Tension model based on ASTM E399 standards. The analyzed parameters included normal stress ({\ensuremath{\sigma}}x, {\ensuremath{\sigma}}y, {\ensuremath{\sigma}}z), directional deformation (dx, dy, dz), crack characteristics, and Stress Intensity Factor (SIFs K1). Simulations were performed by applying proportional tensile loads for each thickness (3000 N for 6.35 mm, 4500 N for 9.525 mm, and 6000 N for 12.7 mm). Simulation results on mechanical crack resistance indicate that the combination of SS 301 material with a thickness of 12.7 mm is the most optimal choice for preventing cracking in pressure vessels. SS 301 offers superior resistance to crack propagation due to its high modulus of elasticity and low deformation. Meanwhile, the 12.7 mm thickness effectively distributes loads, reducing stress, crack length, and crack growth rate.}, url = {https://eprints.untirta.ac.id/52695/} }