eprintid: 51674 rev_number: 15 eprint_status: archive userid: 16250 dir: disk0/00/05/16/74 datestamp: 2025-07-16 02:06:38 lastmod: 2025-07-16 02:06:38 status_changed: 2025-07-16 02:06:38 type: thesis metadata_visibility: show creators_name: AZIZI, SAID RAHMAN creators_id: 3332210079 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Otong, Muhamad contributors_name: Martiningsih, Wahyuni contributors_id: 197203192005011001 contributors_id: 196303132001122001 corp_creators: Universitas Sultan Ageng Tirtayasa corp_creators: Fakultas Teknik corp_creators: Jurusan Teknik Elektro title: ANALISIS KLASIFIKASI KUALITAS KABEL TEGANGAN MENENGAH ISOLASI XLPE DENGAN ALGORITMA K - NEAREST NEIGHBOR ispublished: pub subjects: T1 divisions: Elektro full_text_status: restricted abstract: Over time, the quality of the cable decreases. This study conducted a cable assessment test and the results were classified using the K-Nearest Neighbor algorithm to make it easier to determine quality. The cable conditions were divided into 5 classes and the evaluation was carried out by testing the model performance using accuracy, precision, recall, and F1-score. The test results show that increasing the amount of training data can improve classification performance. With the addition of 100 training data, the K-NN algorithm with K=2 achieved the highest accuracy of 92.86%, precision 0.96, recall 0.9333, and F1-score 0.9378. These results indicate that K-NN can be used to classify underground cables, if supported by sufficient data and the selection of the right K parameters. date: 2025-06-03 date_type: published pages: 53 institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: Teknik Elektro thesis_type: sarjana thesis_name: sarjana citation: AZIZI, SAID RAHMAN (2025) ANALISIS KLASIFIKASI KUALITAS KABEL TEGANGAN MENENGAH ISOLASI XLPE DENGAN ALGORITMA K - NEAREST NEIGHBOR. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/51674/1/Said%20Rahman%20Azizi_3332210079_Fulltext.pdf document_url: https://eprints.untirta.ac.id/51674/2/Said%20Rahman%20Azizi_3332210079_01.pdf document_url: https://eprints.untirta.ac.id/51674/3/Said%20Rahman%20Azizi_3332210079_02.pdf document_url: https://eprints.untirta.ac.id/51674/4/Said%20Rahman%20Azizi_3332210079_03.pdf document_url: https://eprints.untirta.ac.id/51674/5/Said%20Rahman%20Azizi_3332210079_04.pdf document_url: https://eprints.untirta.ac.id/51674/6/Said%20Rahman%20Azizi_3332210079_05.pdf document_url: https://eprints.untirta.ac.id/51674/7/Said%20Rahman%20Azizi_3332210079_Ref.pdf document_url: https://eprints.untirta.ac.id/51674/8/Said%20Rahman%20Azizi_3332210079_Lamp.pdf document_url: https://eprints.untirta.ac.id/51674/9/Said%20Rahman%20Azizi_3332210079_CP.pdf