eprintid: 51201 rev_number: 15 eprint_status: archive userid: 22890 dir: disk0/00/05/12/01 datestamp: 2025-07-11 03:21:39 lastmod: 2025-07-11 03:21:39 status_changed: 2025-07-11 03:21:39 type: thesis metadata_visibility: show contact_email: 3332180024@Untirta.ac.id creators_name: MAULANA IQBAL, RISYAD creators_id: 3332180024 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Fahrizal, Rian contributors_name: Ahendyarti, Ceri contributors_id: 197510262005011001 contributors_id: 199003042019032012 corp_creators: UNIVERSITAS SULTAN AGENG TIRTAYASA corp_creators: FAKULTAS TEKNIK corp_creators: JURUSAN TEKNIK ELEKTRO title: ANALISIS KLASIFIKASI VARIETAS BERAS MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN) ispublished: pub subjects: TK divisions: Elektro full_text_status: restricted keywords: Word Keys: Rice, Deep Learning, Convolutional Neural Network, Transfer Learning note: Analaisis Klasifikasi Varietas Beras Menggunkan Metode Convolutional Neural Network (CNN) Beras merupakan bahan pangan pokok yang banyak dikonsumsi masyarakat. Tingkat kebutuhan yang tinggi banyak dimanfaatkan pelaku usaha untuk melakukan kecurangan berupa pencampuran. Hal tersebut dapat merugikan masyarakat secara ekonomi dan berlawanan dengan peraturan perlindungan konsumen yang ada. Convolutional Neural Network merupakan metode yang digunakan untuk data image pengidentifikasian objek gambar. Input citra beras berukuran 250x250 pixel dari 7 varietas dengan pembagian split data 75:25. Menggunakan google colabs arsitektur CNN dari keras framework yang digunakan ialah Vgg16Net, ResNet50, InceptionV3, dan InceptionResNetV2. Hasil yang didapatkan yaitu arsitektur InceptionV3 memiliki hasil terbaik dengan akurasi 0.985 dari 345 prediksi benar, InceptionResNetV2 dengan akurasi 0.982 dari 344 prediksi benar, Vgg16Net dengan akurasi 0.98 dari 343 prediksi benar, dan ResNet50 dengan akurasi 0.957 dari 335 prediksi benar. Arsitektur Convolutional Neural Network mendapatkan performa baik dalam proses pengklasifikasian varietas, dengan dibantu tahapan transfer learning penggunaan model learning dapat dilakukan secara efisien dan cepat. Kata Kunci: Beras, Pembelajaran Mendalam, Jaringan Syaraf Konvolusi, Pembelajaran Transfer. abstract: Rice Variety Analysis Using the Convolutional Neural Network Method (CNN) Rice is a staple food that is widely consumed by the community. The high level of need is widely used by business actors to commit fraud in the form of mixing. This can harm the community economically and contrary to existing consumer protection regulations. Convolutional Neural Network is a method used for image data identifying image objects. Input rice image measuring 250x250 pixels from 7 varieties with 75:25 split data division. Using google colabs CNN architecture from keras frameworks used are Vgg16Net, ResNet50, InceptionV3, and InceptionResNetV2. The results obtained are InceptionV3 architecture has the best results with an accuracy of 0.985 out of 345 correct predictions, InceptionResNetV2 with an accuracy of 0.982 out of 344 correct predictions, Vgg16Net with an accuracy of 0.98 out of 343 correct predictions, and ResNet50 with an accuracy of 0.957 out of 335 correct predictions. Convolutional Neural Network architecture gets good performance in the process of classifying varieties, with the help of transfer learning stages the use of learning models can be done efficiently and quickly. Word Keys: Rice, Deep Learning, Convolutional Neural Network, Transfer Learning date: 2025-05-28 date_type: published pages: 113 institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: TEKNIK ELEKTRO thesis_type: sarjana thesis_name: sarjana referencetext: [1] Rahayu, S. E., H. Febrianty. Analisis Perkembangan Produksi Beras dan Impor Beras di Indonesia. Proceeding Seminar Nasional Kewirausahaan Hasil Penelitian dan Pengabdian Kepada Masyarakat. 2019. Vol. 1, pp. 219 – 226. [2] Yulnita, R., Yeniwati. Analisis Produksi, Impor Dan Konsumsi Komuditi Beras di Indonesia. Jurnal Kajian Ekonomi Pembangunan, 2019. Vol. 1, No. 2, pp. 623 – 634. [3] Tasril, V., Khairul., F. Wibowo. Aplikasi Sistem Informasi Untuk Menentukan Beras Berbasis Android pada Kelompok Tani Jaya Makmur Desa Banyumas. Jurnal Ilmiah Fakultas Sains dan Teknologi, Universitas Labuhanbatu, 2019. Vol.7, No. 1. [4] Paipan, S., M. Abrar. Determinan Ketergantungan Impor Beras di Indonesia. Jurnal Ekonomi & Kebijakan Publik, 2020. Vol. 11, No. 1, pp. 53 – 64. [5] Ariska, F. M., B. Qurniawan. Perkembangan Impor Beras di Indonesia. Junal Agrimals, 2021. Vol. 1, No. 1 [6] Sani, Y., S. Hodijah., Rosmeli., Analisis Impor Beras di Indonesia. E-Jurnal Perdangan Industri dan Moneter, 2020. Vol. 8, No. 2. [7] Paipan, S., M. Ambar. Analisis Kondisi Ketergantungan Impor Beras di Indonesia. Jurnal Perspektif Ekonomi Darusalam, 2020. Vol. 6, No. 2. [8] Puspitasari, N., L. R. Indrawati., S. N. Sarfiah. Analisis Pengaruh Harga Beras, Cadangan Devisa, dan Rata-RataKonsumsi Beras per Kapita Seminggu Terhadap Impor Beras di Indonesia Tahun 2008- 2017. Directory Journal of Economic, 2018. Vol. 1, No. 1. [9] Wijayanti, E. A., T. F. Rahmadanti., U. Enri. Perbandingan Algoritma SVM dan SVM Berbasis Particle Swarm Optimization pada Klasifikasi Beras Mekongga. Generation Journal, 2021. Vol. 5, No. 2. [10] Hanas, D. F., E. Kriswiyanti., I. K. Junitha. Karakter Morfologi Beras Sebagai Pembeda Varietas Padi. Indonesian Jurnal of Legal and Forensic Sciences, 2017. Vol. 1, No. 23, pp. 23-28. [11] Chairunisak., Sugiyanta., E. Santosa. Pengaruh Nitrogen Terhadap Kualitas Beras Aromatik. Jurnal Agronida, 2021. Vol. 7, No. 1. [12] Maulana, F. F., N. Rochmawati. Klasifikasi Citra Buah Menggunakan Convolutional Neural Network. Juornal of Informatics and Computer Science, 2019. Vol. 1, No. 2. [13] Chollet, F. Deep Learning With Phython. United States Of America Manning Shallter Island, 2018. [14] Ilahiyah, S., A. Nilogiri. Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdarkan Citra Daun Menggunakan Convolutional Neural Network (CNN). Jurnal Sistem dan Teknologi Informasi Indonesia, 2018. Vol. 3, No. 2. [15] Hidarlan, V. F. Rancang Bangun Klasifikasi Varietas Beras Berdasarkan Citra Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Android. Skripsi, Fakultas Teknik Jurusan Elektro Universitas Jendral Soedirman, Jakarta. 2022 [16] Yuliany, S., Aradea., A. N. Rachman. Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN). Jurnal Buana Informatika, 2022. Vol. 13, No. 1. [17] Josshi, P. Artificial Intelligence with Python. Brimingham. Packt Publishing Ltd. 2017. [18] Ririh, K. R., N. Laili., W. Adityo. S. Tsurayya. Studi Komparasi dan Analisis SWOT pada Implementasi Kecerdasan Buatan (Artificial Intelligence) di Indonesia. Jurnal Teknik Industri, 2020. Vol. 15, No. 2. [19] Nakane, T., N. Bold., H. Sun., X. Lu., T. Akashi., C. Zhang. Application of evolutionary and swarm optimization in computer vision: a literature survey. Paper IPSJ Transactions On Computer Vision And Applications, 2020. Vol. 12, No. 3. [20] Dinata, R. K., H. Novia., Panduan Memahami Data Science, Supervised Leaning, Unsupervised Learning and Reinforcement Learning. Machine Learning. Lhokseumawe. Unimal Press. 2020. [21] Sun, S., Z. Cao., H. Zhu., J. Zhao A Survey of Optimization Methods From a Machine Learning Perspective. Journal On Cyberntics IEEE. 2020. Vol. 50, No. 8, pp. 3668 – 3681. [22] Retnoningsih, E., R. Pramudita. Mengenal Machine Learning Dengan Teknik Supervised dan Unsupervised Learning Menggunakan Python. Journal Bina Insani ICT, 2020. Vol. 7, No. 2, pp. 156-165. [23] P, Rifkiee. Belajar Machine Learning Teori dan Praktek. Bandung. Informatika Bandung. 2018. [24] Pengestu, R. A., B. Rahmat., F. T. Anggraeny. Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Citra Lahan Dan Perhitungan Luas. Jurnal Informatika dan Sistem Informasi (JIFoSI), 2020. Vol. 1, No. 1. [25] Paliwang, A. A., M. R. D. Septian., M. Cahyani., E. R. Swedia. Klasifikasi Penyakit Tanaman Apel Dari Citra Daun Dengan Convolutional Neural Network. Jurnal SEBATIK, 2020. Vol. 24, No. 2, pp. 207-212. [26] Antoko, T. D., M. A. Ridani., A. E. Minarno. Klasifikasi Buah Zaitun Menggunakan Convolution Neural Network. Jurnal Komputika Sistem Komputer, 2021. Vol. 10, No. 2, pp. 119-126. [27] Bhardwaj, A., W. Di., J. Weiu. Deep Learning Essentials Your hands-on Guide To Tthe Fundamentals Of Deep Learning And Neural Network Modelling. Brimingham. Packt Publisher. 2018. [28] Kholik, A, A. Harjoko., Wahyuno. Classification of Traffic Vehicle Density Using Deep Learning. Indonesian Journal Of Computing And Cybernetics Systems (IJCCS), 2020. Vol. 14, No.1, pp. 69-80. [29] Dzulqarnain, M. F., Supranto., F. Makhrus. Improvement of Convolutional Neural Network Accuracy On Salak Classification Based Quality On Digital Image. Indonesian Journal Of Computing And Cybernetics Systems (IJCCS), 2019. Vol.13, No.2, pp. 189-198. [30] Zheng, N., P. Mazumder. Fundamentals And Learning Of Artificial Neural Networks. is part of: Learning In Energy-Efficient Neuromorphic Computing: Algorithm And Architecture Co-Design. 2020. [31] Wulandari, I., H. Yasin., T. Widharih. Klasifikasi Citra Digital Bumbu dan Rempah Dengan Algoritma Convolutional Neural Network (CNN). Jurnal Gaussian, 2020. Vol. 9, No. 3, pp. 273-282. [32] Shabber, S. H., S. R. Dubey., V. Pulabaigara., S. Mukherje. Impact Of Fully Connected Layers On Performance Of Convolutional Neural Networks For Image Classification. Journal Pre-Proof Preprint Submitted To Neurocomputing, 2019. Vol. 378, pp. 112-119. [33] Mashita, S. N., Implementas Deep Learning Object Detection Rambu K3 Pada Viedo Menggunakan Metode Convolutional Neural Network (CNN) Dengan Tensorflow. Skripsi. Fakultas Matematika Dan Ilmu Pengetahuan Alam Jurusan Statistika Universitas Ismlam Indonesia. Yogyakarta. 2020. [34] L. Armin., E. Q. Nuranti., K. A. Ahmad., S. A. Thamrin. Implementasi Transfer Learning dan Multi-Channel CNN Pada Penyakit Daun Padi. Prosiding SNTEI, 2022. Teknik Informatika. [35] Sodhi, P., N. Awsthi., V. Sharma. Introduction To Machine Learning And Its Basic Application In Python. Proceedings Of 10th International Conference On Digital Strategies For Organizational Success, 2019. pp. 1354-1357. [36] Ekaba, B., Building Machine Learning and Deep Learning Models on Google Cloud Platform. Canada. Apress. 2019. [37] Nagisetty, A., G. Govind., Framework For Detection Of Malicious Activities In IoT Networks Using Keras Deep Learning Library. Proceedings Of The Third International Conference On Computing Methodologies And Communication (ICCMC). 2019. [38] Koten, M., A. S. Unsal., S. Kahraman., Physicochemical, Nutritional And Cooking Properties Of Local Karacadag Rice (Oryza Sativa L). International Food Research Journal. 2020, Vol. 27, No. 3, pp. 435-444. [39] Wonohadidjojo. D. M., Perbandingan Convolutional Neural Network pada Transfer Learning Method untuk Mengklasifikasikan Sel Darah Putih. Ultimatich, Jurnal Teknik Informatika, 2021. Vol. 13, No.1. [40] Arda, H., I. A. Helvacioglu., C. Meric., C. Tokatli. İpsala İlçesi (Edirne) Toprak ve Pirinç Kalitesinin Bazı Esansiyel ve Toksik Element Birikimleri Açısından Değerlendirilmesi. Journal Tarum Billimleri Arastirma Dergisi., 2015. Vol. 8, No. 1, pp. 7-13. [41] Koten. M., A. S. Unsal., S. Kahraman., “Physicochemical, Nutritional And Cooking Properties Of Local Karacadag Rice (Oryza Sativa L.)”. International Food Research Journal. 2020. Vol. 27, No. 3, pp. 435-444. [42] Sari, A. T., E. Haryatmi. Penerapan Convolutional Neural Network Deep Learning dalam Pendeteksian Citra Biji Jagung Kering. Jurnal Rekayasa Sistem Dan Teknologi Informasi (RESTI), 2021. Vol. 5, No. 2, pp. 265-271. [43] Cinar, I., M. Koklu. Classification of Rice Varieties Using Artificial Intelligence Methods. International Journal of Intelligent Systems and Applications in Engineering (IJISAE). 2019. Vol. 7, No. 3, pp. 188-194. [44] Cinar. I., M. Koklu. Identification of Rice Varieties Using Machine Learning Algorithms. Journal Agricculture Sciences (Traim Bilimleri Dergesi), 2022. Vol. 28, No. 2, pp. 307-235. [45] Koklu, M., I. Cinar., Y. S. Taspinar. Classification Of Rice Varieties With Deep Learning Methods. Journal Computers And Electronics In Agriculture, 2021. Vol. 187. [46] Hasan, M., A. K. Maji., M. Jasinski., Z. Leonowich., E. Jasinska. Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach. Journal Electronics MDPI, 2021. Vol. 10, No. 13 citation: MAULANA IQBAL, RISYAD (2025) ANALISIS KLASIFIKASI VARIETAS BERAS MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN). S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/51201/1/Risyad%20Maulana%20Iqbal%20_3332180024_Full%20Text.pdf document_url: https://eprints.untirta.ac.id/51201/2/Risyad%20Maulana%20Iqbal_3332180024_01.pdf document_url: https://eprints.untirta.ac.id/51201/3/Risyad%20Maulana%20Iqbal_3332180024_02.pdf document_url: https://eprints.untirta.ac.id/51201/4/Risyad%20Maulana%20Iqbal_3332180024_03.pdf document_url: https://eprints.untirta.ac.id/51201/5/Risyad%20Maulana%20Iqbal_3332180024_04.pdf document_url: https://eprints.untirta.ac.id/51201/6/Risyad%20Maulana%20Iqbal_3332180024_05.pdf document_url: https://eprints.untirta.ac.id/51201/7/Risyad%20Maulana%20Iqbal_3332180024_Ref.pdf document_url: https://eprints.untirta.ac.id/51201/8/Risyad%20Maulana%20Iqbal_3332180024_Lamp.pdf document_url: https://eprints.untirta.ac.id/51201/9/Risyad%20Maulana%20Iqbal_3332180024_CP.pdf