eprintid: 49811 rev_number: 37 eprint_status: archive userid: 22491 dir: disk0/00/04/98/11 datestamp: 2025-06-23 04:37:58 lastmod: 2025-06-23 04:37:58 status_changed: 2025-06-23 04:37:58 type: thesis metadata_visibility: show contact_email: 3334200059@untirta.ac.id creators_name: RAHMAT, FAUZAN creators_id: 3334200059 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Abdul, Aziz contributors_name: Agus, Pramono contributors_id: 198003072005011002 contributors_id: 197608182008011012 corp_creators: UNIVERSITAS SULTAN AGENG TIRTAYASA corp_creators: FAKULTAS TEKNIK corp_creators: JURUSAN TEKNIK METALURGI title: ANALISA PENGARUH VARIASI HOLDING TIME HEAT TREATMENT TERHADAP SIFAT MEKANIK, KETAHANAN KOROSI DAN STRUKTUR MIKRO STAINLESS STEEL 304 THIN FOIL ispublished: pub subjects: TN subjects: TS divisions: Metalurgi full_text_status: restricted keywords: SUS 304 Thin Foil, Heat Treatment, Struktur Mikro, Uji Tarik dan Ketahanan Korosi note: Stainless Steel 304 adalah salah satu material yang paling banyak digunakan dalam peralatan industri, karena tingkat keasaman yang cukup tinggi dan ketahanan terhadap korosi yang sangat tinggi. Material ini dapat menahan korosi yang disebabkan oleh berbagai zat kimia. Proses perlakuan panas pada melibatkan pemanasan pada suhu tertentu, ditahan dalam waktu tertentu, dan didinginkan pada media tertentu. Tujuannya adalah untuk meningkatkan keuletan, menghilangkan tegangan internal, menghaluskan butir kristal, serta meningkatkan kekerasan dan kekuatan tarik logam abstract: Stainless steel is a steel alloy that contains at least 11.5% chromium by weight. This type of steel has better corrosion resistance compared to other steel alloys. SUS 304 is one of the stainless steels categorized as austenitic. This study aims to analyze the effect of heat treatment consisting of austenitizing at 900°C and tempering at 400°C, with variations in holding time, on the mechanical properties, corrosion resistance, and microstructure of SUS 304 thin foil used as a protective layer for aircraft sensors.The methods used include tensile testing, corrosion testing using the weight loss method, and metallographic observations. The austenitizing holding times were set at 120, 240, and 360 minutes, while tempering was conducted for 30, 60, and 90 minutes. The results show that heat treatment at an austenitizing temperature of 900°C leads to the transformation of austenite to martensite after quenching. During tempering at 400°C, the precipitation of chromium carbide at grain boundaries was observed.Longer holding times resulted in a decrease in mechanical properties and corrosion resistance. At an austenitizing duration of 360 minutes and tempering for 90 minutes, the material showed the lowest true stress value of 232.25 N/mm² with a true strain of 20%. In addition, the highest corrosion rate (7.55 mmpy) also occurred at the 360-minute austenitizing duration. The resulting microstructure includes austenite, lath martensite, and chromium carbide compounds, which influence the material’s mechanical strength and corrosion resistance. date: 2025-06-22 date_type: published pages: 115 institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: TEKNIK METALURGI thesis_type: sarjana thesis_name: sarjana official_url: https://untirta.ac.id/ referencetext: DAFTAR PUSTAKA [1]. S. Djafrie, Teknologi Mekanik Jilid 1, terjemahan dari Manufacturing Processes. Jakarta: Erlangga, 1985. [2]. Sumarji, "Studi Perbandingan Ketahanan Korosi Stainless Steel Tipe SS 304 dan SS 201 Menggunakan Metode U-BEND Test Secara Siklik Dengan Variasi Suhu dan pH," Jurnal ROTOR, vol. 4, no. 1, pp. 1–8, Jan. 2011. [3]. S. Dewangan and S. Chattopadhyaya, "Analysing Effect of Quenching and Tempering into Mechanical Properties and Microstructure of 304-SS Welded Plates," Acta Metallurgica Slovaca, vol. 28, no. 3, pp. 140–146, 2022. [4]. L. Wei, X. Shusheng, and Z. Xiaojun, "Lead Wire Resistance Compensation Technique Using a Single Zener Diode for Two-Wire Resistance Temperature Detectors (RTDs)," Sensors, vol. 20, no. 2742, pp. 1–11, 2020. [5]. S. Xiaoxiao et al., "An Integrated Gold-Film Temperature Sensor for In Situ Temperature Measurement of a High-Precision MEMS Accelerometer," Sensors, vol. 20, no. 3652, pp. 1–13, 2020. [6]. H. Ezana and L. Jim, "Oscillator Circuits for RTD Temperature Sensors," Microchip Technology Inc., AN895, pp. 1–26, 2004. [7]. C. M. Toarmina and Mc. Gregory, Advanced Temperature Measurement and Control, 2nd ed. Instrument Society for Measurement and Control, pp. 4–18, 1995. [8]. G. Jei et al., "Resistance Temperature Detectors Fabricated via Dual Fused Deposition Modeling of Polylactic Acid and Polylactic Acid/Carbon Black Composites," Sensors, vol. 21, no. 1560, pp. 1–8, 2021. [9]. S. A. Kako, "A Comparative Study about Accuracy Levels of Resistance Temperature Detectors RTDs Composed of Platinum, Copper, and Nickel," Al-Nahrain J. Eng. Sci., vol. 26, no. 3, pp. 216–225, 2023. [10]. B. H. Amstead, Teknologi Mekanik Jilid 1. Jakarta: Erlangga, 1997. [11]. Z. Fatoni, "Pengaruh Perlakuan Panas Terhadap Sifat Kekerasan Baja Paduan Rendah Untuk Bahan Pisau Penyayat Batang Karet," Jurnal Desiminasi Teknologi, vol. 4, no. 1, Jan. 2016. [12]. I. W. Suherman, Pengetahuan Bahan, Institut Teknologi Surabaya, 1987. [13]. Sumarji, "Studi Perbandingan Ketahanan Korosi Stainless Steel Tipe SS 304 Dan SS 201 Menggunakan Metode U-BEND Test Secara Siklik Dengan Variasi Suhu Dan pH," Jurnal ROTOR, vol. 4, no. 1, pp. 1–8, Jan. 2011. [14]. A. Hadrboletz, B. Weiss, and G. Khatibi, "Fatigue and fracture properties of thin metallic foil," Int. J. Fracture, vol. 107, pp. 307–327, 2001. [15]. A. Abazari, S. M. Safavi, G. Rezazadeh, and L. G. Villanueva, "Size Effects on Mechanical Properties of Micro/Nano Structures," Sensors, vol. 15, 2015. [16]. D. Ekasurya, Sumarji, and H. Stjahjono, "Pengaruh Heat Treatment Tempering dengan Variasi Holding Time Terhadap Sifat Mekanik Baja AAR M201 Grade B+," Jurnal Teknik Mesin Univ. Jember, 2014. [17]. K. E. Thelning, Steel and Its Heat Treatment, 2nd ed. London: Butterworths, 1984. [18]. R. R. Aminuddin, A. W. B. Santosa, and H. Yudo, "Analisa Kekuatan Tarik, Kekerasan dan Kekuatan Baja ST 37 Sebagai Bahan Poros Baling-baling Kapal Setelah Proses Tempering," Jurnal Teknik Perkapalan, vol. 8, no. 3, pp. 368–374, Jun. 2020. [19]. A. Setiawan, P. Pribadhi, and M. Ari, "Analisis Pengaruh Heat Treatment terhadap Sifat Mekanik dan Ketahanan Korosi Intergranular SA-240 TP316L," JST, vol. 6, no. 1, 2020. [20]. Y. Handoyo, "Pengaruh Quenching dan Tempering pada Baja JIS Grade S45C Terhadap Sifat Mekanis dan Struktur Mikro Crankshaft," Jurnal Ilmiah Teknik Mesin, vol. 3, no. 2, Aug. 2015. [21]. G. Haryadi, A. Utomo, and I. Ekaputra, "Pengaruh Variasi Temperatur Quenching dan Media Pendingin Terhadap Tingkat Kekerasan Baja AISI 1045," Jurnal Rekayasa Mesin, vol. 16, no. 2, pp. 255–264, Aug. 2021. [22]. Sutiyoko, "Perubahan Sifat Mekanik Material Karena Perbedaan Konsentrasi Larutan Garam NaCl Pada Proses Quenching," Jurnal Foundry, vol. 4, no. 1, 2014. [23]. T. N. Wibowo and Wahyudi, "Pengaruh Proses Quenching Tempering Dengan Variasi Pendingin Dromus, Oli SAE 40 Dan Air Pada Baut Baja C-1026," ITEKS, vol. 11, no. 1, Apr. 2019. [24]. A. S. Umartono and S. Awali, "Analisa Kegagalan Proses Heat Treatment Baja Sup-9 Pada Pembuatan Pegas Daun," Jurnal Keilmuan dan Terapan Teknik, vol. 4, no. 1, pp. 55–75, Jun. 2015. [25]. S. Dewangan and S. Chattopadhyaya, "Analysing Effect of Quenching and Tempering into Mechanical Properties and Microstructure of 304-SS Welded Plates," Acta Metallurgica Slovaca, vol. 28, no. 3, pp. 140–146, 2022. [26]. R. D. Salindeho, J. Soukota, and R. Poeng, "Pemodelan Pengujian Tarik Untuk Menganalisis Sifat Mekanik Material," Poros, vol. 2, no. 2, 2013. [27]. G. D. Haryadi, "Pengaruh Suhu Tempering Terhadap Kekerasan, Kekuatan Tarik dan Struktur Mikro Pada Baja K-460," Rotasi, vol. 8, no. 2, pp. 1–8, Mar. 2012. [28]. A. Aziz and M. Yang, "Constitutive Model of The Surface Roughening Behavior of Austenitic Stainless Steel," Materials, vol. 15, 4348, 2022. [29]. K. R. Trethewey and J. Chamberlain, Korosi Untuk Mahasiswa Sains dan Rekayasa. Jakarta: Gramedia Pustaka Utama, 1991. [30]. P. R. Roberge, Handbook of Corrosion Engineering. New York: McGraw-Hill, 1999. [31]. S. M. Sugeng, F. M. Ismail, and J. P. Utomo, "Analisa Perbedaan Laju Korosi Hasil Pengujian Weight Loss dan Polarisasi," Jurnal Tera, vol. 2, pp. 48–56, 2022. [32]. ASM Handbook, "Metallography And Microstructure," vol. 9, ASM International, 2004. [33]. T. Maki, "Morphology and Substructure of Martensite in Steels," in Phase Transformations in Steels, Woodhead Publishing, vol. 2, pp. 34–58, 2012. [34]. E. Ginting, Endarmoko, and R. Marjunus, "Pengaruh Variasi Waktu Tahan pada Austenisasi dengan Pendinginan Cepat terhadap Kekerasan dan Ketangguhan Baja AISI 1045," Jurnal Fisika Indonesia, vol. 24, no. 1, pp. 47, 2020. [35]. W. D. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction, 9th ed., 2013. [36]. A. Rochman, D. Felicia, and R. Rochiem, "Analisis Pengaruh Variasi Temperatur dan Waktu Tahan Tempering Pada Proses Hardening," Jurnal Teknik ITS, vol. 7, no. 1, 2018. [37]. K. E. Thelning, Steel and Its Heat Treatment, 2nd ed. London: Butterworths, 1984. [38]. A. J. Sedriks, Corrosion of Stainless Steels, 2nd ed. Wiley-Interscience, 1996. [39]. C. Huh, S. An, M. Kim, and C. Kim, "Effect of Corrosion Characteristics on Long-Term Aging of Austenitic 304 Steel," Applied Sciences, vol. 9, no. 5557, pp. 2–11, 2019. [40]. W. Tian et al., "Metastable Pitting Corrosion of 304 Stainless Steel in 3.5% NaCl Solution," Corrosion Science, vol. 85, pp. 372–379, 2014. [41]. A. Pramono, "Karakteristik Struktur Mikro Hasil Proses Hardening Baja Aisi 1045 Media Quenching," Teknika: Jurnal Sains dan Teknologi, vol. 2, pp. 115, 2011. [42]. D. Saputro, R. M. S. Anwar, R. Rusnaldy, and E. Mabruri, "Pengaruh Perlakuan Panas Baja Tahan Karat Martensitik AISI 410 Terhadap Struktur Mikro Dan Ketahanan Korosi," Metalurgi, vol. 33, no. 1, pp. 19–26, 2018. [43]. A. Kina et al., "Microstructure and Intergranular Corrosion Resistance Evaluation of AISI 304 Steel for High Temperature Service," Materials Characterization, vol. 59, no. 5, pp. 651–655, 2008. [44]. A. Aziz and M. Yang, "Effect of Martensitic Transformation and Grain Size on the Surface Roughening Behavior in SUS 304 and SUS 316 Thin Foil," Materials, Article Advance, 2020. [45]. R. Singh et al., "The Effects of Cold Working on Sensitization and Intergranular Corrosion Behavior of AISI 304 Stainless Steel," Metall. Mater. Trans. A, vol. 34A, pp. 244, Nov. 2003. [46]. S. Xiaoxiao et al., "An Integrated Gold-Film Temperature Sensor for In Situ Temperature Measurement of a High-Precision MEMS Accelerometer," Sensors, vol. 20, no. 3652, pp. 1–13, 2020. [47]. S. Saito and T. Surdia, Pengetahuan Bahan Teknik. Jakarta: Pradnya Paramitha, 2000. [48]. S. A. Kako, "A Comparative Study about Accuracy Levels of RTDs Composed of Platinum, Copper, and Nickel," Al-Nahrain J. Eng. Sci., vol. 26, no. 3, pp. 216–225, 2023. [49]. H. Ezana and L. Jim, "Oscillator Circuits for RTD Temperature Sensors," Microchip Technology Inc., AN895, pp. 1–26, 2004. [50]. Soul Ceramics, “Oil Quenching vs Water Quenching,” Soul Ceramics, [Online]. Tersedia: https://www.soulceramics.com/pages/oil-quenching-vs-water-quenching. [Diakses: 10-Januari-2025]. [51]. Builder.id, “Quenching Logam Baja: Apa Itu dan Bagaimana Prosesnya?” Builder.id, [Online]. Tersedia: https://www.builder.id/quenching-logam-baja/. [Diakses: 10-Januari-2025]. [52]. RDF Corporation, “PA-R_02: Heat Treatment,” rdfcorp.com, [Online]. Tersedia: https://rdfcorp.com/anotes/pa-r/pa-r_02.shtml. [Diakses: 10-Januari-2025]. [53]. Marine Engineering and Technology Online, “Temperature Sensor Types Used on Board Ship,” marineeto.we.bs, [Online]. Tersedia: https://www.marineeto.we.bs/2020/07/06/temperature-sensor-types-used-on-board-ship/. [Diakses: 10-Januari-2025]. [54]. Tokopedia, “Plat Strip Stainless Tahan Karat / Plat Stainless Steel 0.15mm x 20mm,” Tokopedia, [Online]. Tersedia: https://www.tokopedia.com/supplier-tanah-abang/list-plat-strip-stainless-tahan-karat-plat-stainless-steel-0-15mm-x-20mm. [Diakses: 10-Januari-2025]. [55]. Thermo Sensors, “RTD's (Resistance Temperature Detectors),” [Online]. Tersedia: https://www.thermosensors.com/pdfs/RTD's.pdf. [Diakses: 10-Januari - 2025]. citation: RAHMAT, FAUZAN (2025) ANALISA PENGARUH VARIASI HOLDING TIME HEAT TREATMENT TERHADAP SIFAT MEKANIK, KETAHANAN KOROSI DAN STRUKTUR MIKRO STAINLESS STEEL 304 THIN FOIL. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/49811/17/Rahmat%20Fauzan_3334200059_Fulltext.pdf document_url: https://eprints.untirta.ac.id/49811/18/Rahmat%20Fauzan_3334200059_01.pdf document_url: https://eprints.untirta.ac.id/49811/3/Rahmat%20Fauzan_3334200059_02.pdf document_url: https://eprints.untirta.ac.id/49811/4/Rahmat%20Fauzan_3334200059_03.pdf document_url: https://eprints.untirta.ac.id/49811/5/Rahmat%20Fauzan_3334200059_04.pdf document_url: https://eprints.untirta.ac.id/49811/6/Rahmat%20Fauzan_3334200059_05.pdf document_url: https://eprints.untirta.ac.id/49811/7/Rahmat%20Fauzan_3334200059_Ref.pdf document_url: https://eprints.untirta.ac.id/49811/8/Rahmat%20Fauzan_3334200059_Lamp.pdf