eprintid: 49665 rev_number: 33 eprint_status: archive userid: 18558 dir: disk0/00/04/96/65 datestamp: 2025-06-18 03:36:23 lastmod: 2025-06-18 03:36:23 status_changed: 2025-06-18 03:36:23 type: thesis metadata_visibility: show contact_email: naznabilaauffa@gmail.com creators_name: Naznabila, Auffa creators_id: 3334200046 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Uswatun Hasanah, Indah contributors_name: Ali Alhamidi, Ahmad contributors_id: 199012142019032022 contributors_id: 197312131999031001 corp_creators: UNIVERSITAS SULTAN AGENG TIRTAYASA corp_creators: FAKULTAS TEKNIK corp_creators: JURUSAN TEKNIK METALURGI title: EFEK QUENCHING DAN PARTITIONING TERHADAP SIFAT MEKANIK, KETAHANAN KOROSI, DAN STRUKTUR MIKRO PADA STAINLESS STEEL 316L ispublished: pub subjects: T1 subjects: TC subjects: TN subjects: TS divisions: Metalurgi full_text_status: restricted keywords: Quenching and Partitioning, 316L Stainless Steel, Microstructure, Toughness, Corrosion Resistance. abstract: Material selection is very important for ship design and performance, especially for propeller shafts. Stainless steel 316L is commonly chosen for its corrosion resistance as a propeller shaft material. Although corrosion resistant, stainless steel 316L is still susceptible to pitting corrosion. Given that the shaft operates continuously while the ship is in operation, the potential for material damage cannot be avoided. This study aims to analyze the effects of quenching and partitioning on the mechanical properties, corrosion resistance, and microstructure of stainless steel 316L. The research process involved austenitization at 1000°C, initial quenching at 250°C, followed by partitioning at temperatures of 350°C, 425°C, and 500°C for 10 minutes, and final quenching. The testing was conducted using impact testing and electrochemical testing in NaCl medium with varying concentrations. The results of the study indicate that quenching and partitioning treatments can enhance the toughness of stainless steel 316L as the partitioning temperature increases compared to untreated samples, from 1.34 J/mm² to 1.85 J/mm². This increase in toughness is attributed to the fraction of retained austenite phase in the microstructure, which continues to increase with partitioning temperature, reaching 45.81%, 46.93%, and 49.83%. However, quenching and partitioning did not significantly improve corrosion resistance against higher NaCl concentrations due to grain size growth and the presence of retained austenite and martensite phases, which are more electrochemically active, making them more susceptible to chloride ion attack in NaCl solutions. Based on pitting potential, no indications of pitting corrosion were found. This study provides important insights into optimizing heat treatment to enhance mechanical properties and understanding the limitations in improving the corrosion resistance of 316L stainless steel, making it relevant for maritime applications. date: 2025 date_type: published pages: 122 institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: TEKNIK METALURGI thesis_type: sarjana thesis_name: sarjana referencetext: [1] J.-Z. Liu, H.-P. Guo, dan Z.-J. Zou, “A Study on Interaction among Hull, Diesel Engine and Propellers of a Twin-screw Ship During Turning Circle Maneuver,” 2023. [Daring]. Tersedia pada: https://ssrn.com/abstract=4207998 [2] H. S. Han, K. H. Lee, dan S. H. Park, “Estimate of The Fatigue Life of The Propulsion Shaft from Torsional Vibration Measurement and The Linear Damage Summation Law in Ships,” Ocean Engineering, vol. 107, hlm. 212–221, Agu 2015, doi: 10.1016/j.oceaneng.2015.07.023. [3] D. Zou, J. Zhang, G. Liu, N. Ta, dan Z. Rao, “Study on Characteristics of Propeller Exciting Force Induced by Axial Vibration of Propulsion Shafting: Theoretical Analysis,” Ocean Engineering, vol. 202, Apr 2020, doi: 10.1016/j.oceaneng.2020.106942. [4] I. Al Adaby, L. L. A. Putri, . S., S. M. Dhiaulhaq, dan Y. Amalia, “Analisis Fatigue Failure pada Shaft Propeller Sebagai Instrumen Utama Penggerak Kapal,” Jurnal Energi Dan Manufaktur, vol. 15, no. 1, hlm. 54, Apr 2023, doi: 10.24843/jem.2022.v15.i01.p07 [5] A. J. Sinaga dan C. Manurung, “Analisa Laju Korosi dan Kekerasan pada Stainless Steel 316L dalam Larutan 10% NaCl dengan Variasi Waktu Perendaman,” Sprocket Journal Of Mechanical Engineering, vol. 1, no. 2, hlm. 92–99, Mar 2020, doi: 10.36655/sprocket.v1i2.186. [6] S. Novita, E. Ginting, dan W. Astuti, “Analisis Laju Korosi dan Kekerasan pada Stainless Steel 304 dan Baja Nikel Laterit dengan Variasi Kadar Ni (0, 3, dan 10%) dalam Medium Korosif,” Jurnal Teori dan Aplikasi Fisika, vol. 6, no. 1, hlm. 21–32, 2018. [7] N. M. S. Adzali, N. A. Azhar, Z. Che Daud, N. H. Ahmad Zaidi, dan S. A. Adnan, “Heat Treatment of SS 316L for Automotive Applications,” dalam Materials Science Forum, Trans Tech Publications Ltd, 2020, hlm. 28–33. doi: 10.4028/www.scientific.net/MSF.1010.28. [8] F. Bahfie, K. I. Prawijaya, S. S. Lana, F. Nurjaman, W. Astuti, dan D. Susanti, “Heat Treatment Technology for Stainless Steel 316 (L),” Progress in Physics of Metals, vol. 23, no. 4, hlm. 729–743, Okt 2022, doi: 10.15407/ufm.23.04.729 [9] M. Affandi, M. Ari, dan D. Anggara, “Analisa Pengaruh Waktu Penahanan pada Proses Quenching-Partitioning terhadap Sifat Mekanik dan Struktur Mikro Baja JIS SUP 9A,” Conference on Design and Manufacture and its Aplication, vol. 1, 2017. [10] G. V. S. Karthik dan G. Rakesh, “Quenching & Partitioning in Stainless Steels,” IOSR Journal of Mechanical and Civil Engineering, vol. 15, no. 4, hlm. 39–43, 2018, doi: 10.9790/1684-1504013943. [1] J.-Z. Liu, H.-P. Guo, dan Z.-J. Zou, “A Study on Interaction among Hull, Diesel Engine and Propellers of a Twin-screw Ship During Turning Circle Maneuver,” 2023. [Daring]. Tersedia pada: https://ssrn.com/abstract=4207998 [2] H. S. Han, K. H. Lee, dan S. H. Park, “Estimate of The Fatigue Life of The Propulsion Shaft from Torsional Vibration Measurement and The Linear Damage Summation Law in Ships,” Ocean Engineering, vol. 107, hlm. 212–221, Agu 2015, doi: 10.1016/j.oceaneng.2015.07.023. [3] D. Zou, J. Zhang, G. Liu, N. Ta, dan Z. Rao, “Study on Characteristics of Propeller Exciting Force Induced by Axial Vibration of Propulsion Shafting: Theoretical Analysis,” Ocean Engineering, vol. 202, Apr 2020, doi: 10.1016/j.oceaneng.2020.106942. [4] I. Al Adaby, L. L. A. Putri, . S., S. M. Dhiaulhaq, dan Y. Amalia, “Analisis Fatigue Failure pada Shaft Propeller Sebagai Instrumen Utama Penggerak Kapal,” Jurnal Energi Dan Manufaktur, vol. 15, no. 1, hlm. 54, Apr 2023, doi: 10.24843/jem.2022.v15.i01.p07 [5] A. J. Sinaga dan C. Manurung, “Analisa Laju Korosi dan Kekerasan pada Stainless Steel 316L dalam Larutan 10% NaCl dengan Variasi Waktu Perendaman,” Sprocket Journal Of Mechanical Engineering, vol. 1, no. 2, hlm. 92–99, Mar 2020, doi: 10.36655/sprocket.v1i2.186. [6] S. Novita, E. Ginting, dan W. Astuti, “Analisis Laju Korosi dan Kekerasan pada Stainless Steel 304 dan Baja Nikel Laterit dengan Variasi Kadar Ni (0, 3, dan 10%) dalam Medium Korosif,” Jurnal Teori dan Aplikasi Fisika, vol. 6, no. 1, hlm. 21–32, 2018. [7] N. M. S. Adzali, N. A. Azhar, Z. Che Daud, N. H. Ahmad Zaidi, dan S. A. Adnan, “Heat Treatment of SS 316L for Automotive Applications,” dalam Materials Science Forum, Trans Tech Publications Ltd, 2020, hlm. 28–33. doi: 10.4028/www.scientific.net/MSF.1010.28. [8] F. Bahfie, K. I. Prawijaya, S. S. Lana, F. Nurjaman, W. Astuti, dan D. Susanti, “Heat Treatment Technology for Stainless Steel 316 (L),” Progress in Physics of Metals, vol. 23, no. 4, hlm. 729–743, Okt 2022, doi: 10.15407/ufm.23.04.729 [9] M. Affandi, M. Ari, dan D. Anggara, “Analisa Pengaruh Waktu Penahanan pada Proses Quenching-Partitioning terhadap Sifat Mekanik dan Struktur Mikro Baja JIS SUP 9A,” Conference on Design and Manufacture and its Aplication, vol. 1, 2017. [10] G. V. S. Karthik dan G. Rakesh, “Quenching & Partitioning in Stainless Steels,” IOSR Journal of Mechanical and Civil Engineering, vol. 15, no. 4, hlm. 39–43, 2018, doi: 10.9790/1684-1504013943. [11] L. G. Peng, W. J. Liu, X. Liu, dan Y. Zhi, “Experimental Study on the Effect of Retained Austenite on the Impact Toughness of a Low-Carbon Martensite Steel,” Adv Mat Res, vol. 1095, hlm. 119–123, Mar 2015, doi: 10.4028/www.scientific.net/amr.1095.119. [12] A. Alhamidi, S. N. Fitriani, Y. M. Zulaida, T. Partuti, dan I. U. Hasanah, “Proses Quenching and Partitioning Terhadap Sifat Mekanik Baja Karbon Medium,” Jurnal Rekayasa Mesin, vol. 15, no. 2, hlm. 118, 2020, doi: 10.32497/jrm.v15i2.1869. [13] H. Bhadeshia dan R. Honeycombe, “Stainless Steel,” dalam Steels: Microstructure and Properties, Elsevier, 2017, 12, hlm. 343–376. doi: 10.1016/B978-0-08-100270-4.00012-3. [14] K. J. Anusavice dan C. Shen, Philips’ Science of Dental Materials. Elsevier, 2003. [Daring]. Tersedia pada: http://www.elsevier.com [15] D. Nizar Zulfika, “Analisis Pengaruh Jenis Material Stainless Steel dan Waktu Perendaman Larutan H2SO4 terhadap Laju Korosi,” Majamecha, vol. 5, hlm. 1–5, 2023. [16] Atlas Steels, “Stainless Steel 316 Product Data Sheet,” 2011. [Daring]. Tersedia pada: www.atlassteels.com.au [17] A. Zulfikar, “Pengaruh Penambahan Nikel (Ni) terhadap Kekerasan dan Struktur Mikro Paduan Fe-Cr-Ni Melalui Metode Pengecoran,” Institut Teknologi Sepuluh Nopember, 2015. [18] M. Pramudia, A. Sahru Romadhon, J. Raya Telang, dan K. Kamal, “Pengaruh Variasi Ukuran Bola Baja Pada Proses Dry Shot Peening terhadap Mikrostruktur dan Kekerasan Material Implan AISI 316L,” Jurnal Rekayasa Mesin, vol. 9, no. 3, hlm. 169–172, 2018. [19] N. A. Marwan, M. A. Saad, J. M. Hamed, dan M. Al_Hifadhi, “Effects of Heat Treatment on the Corrosion and Mechanical Properties of Stainless Steel 316L as Used in Biomedical Applications,” IOP Conf Ser Mater Sci Eng, vol. 1067, no. 1, hlm. 012142, Feb 2021, doi: 10.1088/1757-899x/1067/1/012142. [20] J. Cai, J. Lin, dan J. Wilsius, “Modelling phase transformations in hot stamping and cold die quenching of steels,” dalam Microstructure Evolution in Metal Forming Processes, Elsevier, 2012, hlm. 210–236. doi: 10.1533/9780857096340.2.210. [21] Kms. I. Prawijaya, “Efek Termal Hardening dengan Perlakuan Panas Siklik terhadap Struktur Mikro dan Sifat Mekanis Baja Tahan Karat 316,” Universitas Lampung, 2022. [22] S. A. Afolalu dkk., “Quenching A Significant Index Control in Heat Treatment - An Overview,” dalam Journal of Physics: Conference Series, Institute of Physics Publishing, Des 2019. doi: 10.1088/1742-6596/1378/3/032034. [23] P. S. Ahmed dan S. Talabani, “Experimental and Numerical Investigation for Quench Annealed 316L Stainless Steel by Number of Quenching Media,” IOSR Journal of Mechanical and Civil Engineering, vol. 14, no. 02, hlm. 96–103, Apr 2017, doi: 10.9790/1684-14020596103. [24] ASTM, “ASTM G102-89: Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements,” November 2015 doi: 10.1520/G0102-89R15E01. [25] D. V. Edmonds, E. de Moor, D. K. Matlock, dan J. G. Speer, “Quenching and Partitioning Steel,” dalam Encyclopedia of Iron, Steel, and Their Alloys, CRC Press, 2016, hlm. 2776–2793. doi: 10.1081/e-eisa-120048860. [26] T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada, dan S. Takaki, “Quenching and Partitioning Treatment of a Low-Carbon Martensitic Stainless Steel,” Materials Science and Engineering: A, vol. 532, hlm. 585–592, 2012, doi: 10.1016/j.msea.2011.10.125. [27] M. Carpio, J. Calvo, O. García, J. P. Pedraza, dan J. M. Cabrera, “Heat Treatment Design for a QP Steel: Effect of Partitioning Temperature,” Metals (Basel), vol. 11, no. 7, Jul 2021, doi: 10.3390/met11071136. [28] S. Kresser, R. Schneider, H. Zunko, dan C. Sommitsch, “Influence of Partitioning Effects on the Retained Austenite Content and Properties of Martensitic Stainless Steel,” Steel Res Int, vol. 94, no. 4, Apr 2023, doi: 10.1002/srin.202200502. [29] Y. Wang dkk., “Effects of Heat Treatment Temperature on Impact Toughness and Anisotropy of 316L Stainless Steel Formed by Selective Laser Melting,” Zhongguo Jiguang/Chinese Journal of Lasers, vol. 51, no. 12, Feb 2024, doi: 10.3788/CJL230932. [30] M. Franceschi dkk., “Materials Effect of Different Austempering Heat Treatments on Corrosion Properties of High Silicon Steel,” Materials, 2021, doi: 10.3390/ma. [31] B. Weiss dan R. Stickler, “Phase Instabilities During High Temperature Exposure of 316 Austenitic Stainless Steel,” Metallurgical Transactions, vol. 3, hlm. 851–866, 1972. [32] A. I. Martinez-Ubeda, I. Griffiths, M. S. A. Karunaratne, P. E. J. Flewitt, C. Younes, dan T. Scott, “Influence of nominal composition variation on Phase Evolution and Creep Life of Type 316H Austenitic Stainless Steel Components,” dalam Procedia Structural Integrity, Elsevier B.V., 2016, hlm. 958–965. doi: 10.1016/j.prostr.2016.06.123. [33] C. Rowolt, B. Milkereit, A. Springer, C. Kreyenschulte, dan O. Kessler, “Dissolution and precipitation of copper-rich phases during heating and cooling of precipitation-hardening steel X5CrNiCuNb16-4 (17-4 PH),” J Mater Sci, vol. 55, no. 27, hlm. 13244–13257, Sep 2020, doi: 10.1007/s10853-020-04880-4. [34] A. B. Wicaksono, H. Sutanto, dan W. Ruslanc, “Effects of immersion in the NaCl and H2SO4 solutions on the corrosion rate, microstructure, and hardness of stainless steel 316L,” Research on Engineering Structures and Materials, vol. 9, no. 4, hlm. 1153–1168, 2023, doi: 10.17515/resm2023.695ma0220. [35] F. Gapsari, Pengantar Korosi. UB Press, 2017. [36] A. V. Bansod, N. N. Khobragade, K. V. Giradkar, dan A. P. Patil, “Effect of concentration of hyaluronic acid and NaCl on corrosion behavior of 316L austenitic stainless steel,” Mater Res Express, vol. 4, no. 11, Nov 2017, doi: 10.1088/2053-1591/aa94da. [37] H. Porawati, “Analisis Alat Uji Impak Metode Izod pada Bengkel Politeknik Jambi,” Jurnal Inovator, vol. 1, no. 1, hlm. 1–5, 2018, [Daring]. Tersedia pada: www.ojs.politeknikjambi.ac.id/index/inovator [38] S. A. Jalil, Zulkifli, dan T. Rahayu, “Analisa Kekuatan Impak pada Penyambungan Pengelasan SMAW Material ASSAB 705 dengan Variasi Arus Pengelasan,” Polimesin, vol. 15, hlm. 58–63, 2017. [39] ASTM, “ASTM E-23: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials” [40] ASTM, “ASTM E23: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials,” 2001 [41] ASTM, “ASTM G31-12a: Standard Guide for Laboratory Immersion Corrosion Testing of Metals,” 1 Juli 2012, ASTM International, West Conshohocken, PA. doi: 10.1520/G0031-12A. [42] ASTM, “ASTM D 1141-98: Standard Practice for the Preparation of Substitute Ocean Water 1,” 2003 [Daring]. Tersedia pada: www.astm.org [43] I. A. Hasani dan P. T. Iswanto, “Pengaruh Shot Peening dengan Tekanan Tinggi terhadap Sifat Fisik dan Mekanik Stainless Steel 316L,” INOTEK, vol. 7, hlm. 36–43, 2023, [Daring]. Tersedia pada: https://proceeding.unpkediri.ac.id/index.php/inotek/ [44] S. Y. Lu, K. F. Yao, Y. B. Chen, M. H. Wang, N. Chen, dan X. Y. Ge, “Effect of Quenching and Partitioning on The Microstructure Evolution and Electrochemical Properties of a Martensitic Stainless Steel,” Corros Sci, vol. 103, hlm. 95–104, Feb 2016, doi: 10.1016/j.corsci.2015.11.010. [45] K. Sains dan W. Wijanarko, “Studi Eksperimental Pengaruh Variasi Temperatur dan Waktu Penahanan Partitioning pada Proses Quenching-Partitioning Baja Jis S45c di Bawah Temperatur Martensite Start,” Jurnal Teknik ITS, vol. 6, no. 1, hlm. 191–194, 2017. [46] S. H. Avner, Introduction to Physical Metallurgy, Second. McGraw Hill, 1974. [47] J. G. Speer, A. M. Streicher, D. K. Matlock, F. Rizzo, dan G. Krauss, “Quenching and Partitioning: A Fundamentally New Process to Create High Strength Trip Sheet Microstructures,” The Iron and The Society & The Minerals, Metals, and Material Society, hlm. 505–522, 2003. [48] D. V. Edmonds, K. He, F. C. Rizzo, B. C. De Cooman, D. K. Matlock, dan J. G. Speer, “Quenching and Partitioning Martensite-a Novel Steel Heat Treatment,” Materials Science and Engineering: A, vol. 438–440, no. SPEC. ISS., hlm. 25–34, Nov 2006, doi: 10.1016/j.msea.2006.02.133. [49] ASM International, “Color Metallography,” dalam ASM Handbook, Volume 9: Metallography and Microstructures, G. F. Vander Voort, Ed., 2004, hlm. 493–512. doi: 10.1361/asmhba0003752. [50] Q. Huang dkk., “Quenching and Partitioning (Q&P) Processing of a (C+N)-Containing Austenitic Stainless Steel,” Materials Science and Engineering: A, vol. 854, Sep 2022, doi: 10.1016/j.msea.2022.143787. [51] K. Suharno, C. Pramono, dan S. Widodo, “Ketangguhan Impak Baja dan Aluminium Akibat Pengaruh Perlakuan Panas,” vol. 39, no. 2, hlm. 30–44, 2013. [52] Furkan, A. Ibrahim, dan Azwar, “Pengaruh Temperatur Cryogenic terhadap Ketangguhan Impact Sambungan Pengelasan Stainless Steel AISI 304,” Jurnal Mesin Sains Terapan, vol. 4, no. 1, 2020. [53] M. J. Jiménez-Come, I. J. Turias, dan F. J. Trujillo, “Pitting Potential Modeling Using Bayesian Neural Networks,” Electrochem commun, vol. 35, hlm. 30–33, 2013, doi: 10.1016/j.elecom.2013.07.039. [54] M. Alfattah dan I. Gusti Ayu Arwati, “Analisis Laju Korosi Logam Stainless Steel 316L di Media Air Laut Menggunakan Metode Elektrokimia,” 2022. [55] R. B. Rastogi, M. M. Singh, K. Singh, dan M. Yadav, “Organotin Dithiohydrazodicarbonamides as Corrosion Inhibitors for Mild Steel- Dimethyl Sulphoxide Containing HCl,” Portugaliae Electrochimica Acta, vol. 23, no. 2, hlm. 315–332, 2005, doi: 10.4152/pea.200502315. [56] M. Sugeng, F. M. Ismail, dan J. P. Utomo, “Analisis Perbedaan Laju Korosi Hasil Pengujian Weight Loss dan Polarisasi pada Pipa dengan Pengujian Korosi Standar ASTM G59 dan ASTM G31,” Jurnal Tera, vol. 2, no. 1, hlm. 48–56, 2022. [57] R. Yamanoglu, E. Fazakas, F. Ahnia, D. Alontseva, dan F. Khoshnaw, “Pitting Corrosion Behaviour of Austenitic Stainless-Steel Coated on Ti6Al4V Alloy in Chloride Solutions,” Advances in Materials Science, vol. 21, no. 2, hlm. 5–15, Jun 2021, doi: 10.2478/adms-2021-0007. [58] M. Soleimani, H. Mirzadeh, dan C. Dehghanian, “Effect of Grain Size on The Corrosion Resistance of Low Carbon Steel,” Mater Res Express, vol. 7, no. 1, 2019, doi: 10.1088/2053-1591/ab62fa. [59] Neetu, P. K. Katiyar, S. Sangal, dan K. Mondal, “Effect of Various Phase Fraction of Bainite, Intercritical Ferrite, Retained Austenite and Pearlite on The Corrosion Behavior of Multiphase Steels,” Corros Sci, vol. 178, hlm. 1–41, Sep 2020, doi: 10.1016/j.corsci.2020.109043. [60] M. C. Bignozzi dkk., “Effect of Heat Treatment Conditions on Retained Austenite and Corrosion Resistance of the X190CrVMo20-4-1 Stainless Steel,” Metals and Materials International, vol. 26, no. 9, hlm. 1318–1328, Sep 2020, doi: 10.1007/s12540-019-00384-2. [61] S. Barella dkk., “The Reliability of Single-Step and Double-Step Quench and Partitioning Heat Treatments on an AISI 420A Low Carbon Martensitic Stainless Steel,” Metall Mater Trans A Phys Metall Mater Sci, vol. 54, no. 10, hlm. 3957–3972, Okt 2023, doi: 10.1007/s11661-023-07145-2. [62] M. McGuire, Stainless Steels for Design Engineers. ASM International, 2008. citation: Naznabila, Auffa (2025) EFEK QUENCHING DAN PARTITIONING TERHADAP SIFAT MEKANIK, KETAHANAN KOROSI, DAN STRUKTUR MIKRO PADA STAINLESS STEEL 316L. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/49665/7/Auffa%20Naznabila_3334200046_Fulltext.pdf document_url: https://eprints.untirta.ac.id/49665/3/Auffa%20Naznabila_3334200046_01.pdf document_url: https://eprints.untirta.ac.id/49665/5/Auffa%20Naznabila_3334200046_02.pdf document_url: https://eprints.untirta.ac.id/49665/1/Auffa%20Naznabila_3334200046_03.pdf document_url: https://eprints.untirta.ac.id/49665/6/Auffa%20Naznabila_3334200046_04.pdf document_url: https://eprints.untirta.ac.id/49665/2/Auffa%20Naznabila_3334200046_05.pdf document_url: https://eprints.untirta.ac.id/49665/4/Auffa%20Naznabila_3334200046_Ref.pdf document_url: https://eprints.untirta.ac.id/49665/8/Auffa%20Naznabila_3334200046_Lamp.pdf document_url: https://eprints.untirta.ac.id/49665/9/Auffa%20Naznabila_3334200046_CP.pdf