eprintid: 48633 rev_number: 17 eprint_status: archive userid: 9926 dir: disk0/00/04/86/33 datestamp: 2025-05-09 02:20:00 lastmod: 2025-05-09 02:20:00 status_changed: 2025-05-09 02:20:00 type: thesis metadata_visibility: show contact_email: debatarajaotniel@gmail.com creators_name: Debataraja, Otniel creators_id: 3331210040 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Wahyudi, Hadi contributors_name: Caturwati, Ni Ketut contributors_id: 197101162002121001 contributors_id: 196706022001122001 corp_creators: UNIVERSITAS SULTAN AGENG TIRTAYASA corp_creators: FAKULTAS TEKNIK corp_creators: JURUSAN TEKNIK MESIN title: SIMULASI LAJU EROSI PADA PIPA ELBOW CARBON STEEL DENGAN METODE CFD-DEM ispublished: pub subjects: TJ divisions: Mesin full_text_status: restricted abstract: Erosi terjadi akibat tumbukan oleh fluida yang mengandung partikel keras. Erosi sering terjadi pada sistem perpipaan akibat gangguan pola aliran yang stabil, yang menyebabkan bagian elbow pipa rentan terkena dampak erosi. Erosi dapat mengakibatkan kerugian, seperti loss production, keselamatan pekerja, sehingga diperlukan analisa untuk dapat mengetahui pola dari laju erosi sehingga dapat mencegah atau mengurangi dampak dari erosi. Penelitian ini bertujuan untuk mengetahui pola erosi partikel yang terjadi dalam aliran fluida, mengetahui pengaruh kecepatan fluida terhadap laju erosi yang dihasilkan pada pipa elbow, dan mengetahui pengaruh dari besar sudut pipa elbow terhadap laju erosi partikel pasir pada pipa elbow. Metode yang digunakan yaitu simulasi dengan metode CFD-DEM, untuk mengetahui perilaku dari fluida dan partikel yang terdapat pada pipa elbow carbon steel. Penelitian ini menggunakan variasi kecepatan aliran 3 m/s, 5 m/s, dan 7 m/s, serta besar sudut elbow 30°, 60°, dan 90° serta arah dari aliran, searah dan berlawanan arah dengan arah gravitasi. Hasil penelitian menunjukkan bahwa semakin tinggi kecepatan dari aliran, maka semakin tinggi laju erosi yang terbentuk, dan sudut yang terdampak erosi paling besar yaitu sudut 30°, dengan data laju erosi yang terbentuk pada kecepatan 3 m/s yaitu sebesar 1.3278 x 10^(-7) mm^3/s, pada kecepatan 5 m/s sebesar 5.852 x 10^(-7) mm^3/s, dan pada kecepatan 7 m/s sebesar 1.268 x 10^(-6) mm^3/s. date: 2025-05-08 date_type: published pages: 75 institution: FAKULTAS TEKNIK UNIVERSITAS SULTAN AGENG TIRTAYASA department: TEKNIK MESIN thesis_type: sarjana thesis_name: sarjana referencetext: [1] N. Bukharin, M. Forrakhzad og M. E. Hassan, ''A Comprehensive Analysis of the Erosion in a carbon steel boiler tube elbow through the use of 3D mapping of the corroded surface and CFD modelling,'' Advanced Topics in Mechanics of Materials, Structures and Construction - AToMech, vol. 1, nr. 31, pp. 755-764, 2023. [2] L. Zeng, G. Zhang og X. Guo, "Erosion-corrosion at different locations of X65 carbon steel elbow," Corrosion Science, vol. 85, pp. 318-330, 2014. [3] T. A. Sedrez og S. A. Shirazi, “Erosion evaluation of elbows in series with different configurations,” Wear, vol. 476, 2021. [4] S. Qian og S. Kanamaru, “Verification of CFD Prediction Accuracy of Particle and Droplet Induced Erosion Rate for Engineering Applications,” MATEC Web Conf, vol. 333, 2021. [5] R. Khan, H. H. Ya og A. Khan, “Erosion-Corrosion of 30°, 60°, and 90° Carbon Steel Elbows in a Multiphase Flow Containing Sand Particles.,” Materials, vol. 12, nr. 23, pp. 1-15, 2019. [6] I. W. Yudhatama, M. I. P. Hidayat og W. Jatimurti, “Simulasi COmputational Fluida Dynamics (CFD) Erosi Partikel Pasir dalam Aliran Fluida Gas Turbulen pada Elbow Pipa Vertikal - Horizontal,” Teknik ITS, vol. 7, nr. 2, pp. 134-139, 2018. [7] I. Finnie, “Erosion of Surface by Solid Particles,” Wear, vol. 3, pp. 87-103, 1960. [8] L. R. Krisnanda, A. Santoso og T. F. Nugroho, “Analisa Laju Erosi pada Elbow Pipa Karena Partikel Pasir dalam Aliran FLuida Gas Menggunakan Simulasi CFD,” Teknik ITS, vol. 8, nr. 2, pp. 57-62, 2019. [9] M. Parsi, K. Najmi, F. Najafifard, S. Hassani, B. S. McLaury og S. A. Shirazi, “A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications,” Journal of Natural Gas Science and Engineering, vol. 21, pp. 850-873, 2014. [10] H. M. Clark, “Particle velocity and size effects in laboratory slurry erosion measurements OR… do you know what your particles are doing?,'' Tribology International, vol. 35, nr. 10, pp. 617-624, 2002. [11] S. G. L., “Similarities and Differences in the Erosion Behavior of Materials,” Basic Engineering, vol. 92, nr. 3, pp. 619-626, 1970. [12] I. Finnie, “The mechanism of erosion of ductile materials,” Proceedings of the Third U. S. National Congress of Applied Mechanics, pp. 527-532, 1958. [13] J. A. Laitone, “Aerodynamic effects in the erosion process,” Wear, vol. 56, nr. 1, pp. 239-246, 1979. [14] J. A. Laitone, “Erosion Prediction near a Stagnation Point Resulting from Aerodynamically Entrained Solid Particles,” J. Aircraft, vol. 16, nr. 12, pp. 809-814, 1979. [15] C. E. Smelter, M. E. Gulden og W. A. Compton, “Mechanisms of Metal Removal by Impacting Dust Particles,” Fluids Engineering, vol. 92, nr. 3, pp. 639-652, 1970. [16] A. Burnett, S. De Silva og A. Reed, “Comparisons between “sand blast” and “centripetal effect accelerator” type erosion testers,” Wear, Vol. %1 av %2186-187, nr. 1, pp. 168-178, 1995. [17] Y. Oka, K. Okamura og T. Yoshida, “Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation,” Wear, vol. 259, nr. 1-6, pp. 95-101, 2005. [18] Y. Oka og T. Yoshida, “Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage,” Wear, vol. 259, nr. 1-6, pp. 102-109, 2005. [19] J. Salik, D. Buckley og W. A. Brainard, “The effect of mechanical surface and heat treatments on the erosion resistance of 6061 aluminum alloy,” Wear, vol. 65, nr. 3, pp. 351-358, 1981. [20] G. Tilly, “A two stage mechanism of ductile erosion,” Wear, vol. 23, nr. 1, pp. 87-96, 1973. [21] H. Versteeg og W. Malalasekera, An Introduction to Computational Fluida Dynamics, Harlow: Pearson Education, 2007. [22] A. A. Mahmood og Elektorowicz, “A Review of Discrete Element Method Research on Particulate Systems,” IOP Conf. Series: Materials Science and Engineering, vol. 136, nr. 1, 2016. [23] J. C. Steuben, Illopoulos og J. G. Michopoulos, “ON MULTIPHYSICS DISCRETE ELEMENT MODELING OF POWDER-BASEDADDITIVE MANUFACTURING PROCESSES,” IDETC/CIE, 2016. [24] J. Ferziger og M. Peric, Computational Methods for Fluid Dynamics, New York: Springer, 2002. [25] Baharuddin, A. Rofiq og A. H. Sitepu, “Analisa Penggunaan Vortex Generator pada Elbow Pipa untuk Mengurangi Laju Erosi pada Sistem Perpipaan Kapal,” Riset & Teknologi Terapan Kemaritiman, vol. 1, nr. 2, pp. 47-54, 2022. [26] M. S. A. Ajes, “VIRTUAL BURSTING TEST ELBOW 16” LR 90° DENGAN METODE ELEMEN HINGGA MENGGUNAKAN SOFTWARE ANSYS WORKBENCH,” Seminar Nasional Sains dan Teknologi 2015, pp. 1-12, 2015. citation: Debataraja, Otniel (2025) SIMULASI LAJU EROSI PADA PIPA ELBOW CARBON STEEL DENGAN METODE CFD-DEM. S1 thesis, FAKULTAS TEKNIK UNIVERSITAS SULTAN AGENG TIRTAYASA. document_url: https://eprints.untirta.ac.id/48633/1/Otniel%20Debataraja_3331210040_Fulltext.pdf document_url: https://eprints.untirta.ac.id/48633/2/Otniel%20Debataraja_3331210040_01.pdf document_url: https://eprints.untirta.ac.id/48633/3/Otniel%20Debataraja_3331210040_02.pdf document_url: https://eprints.untirta.ac.id/48633/4/Otniel%20Debataraja_3331210040_03.pdf document_url: https://eprints.untirta.ac.id/48633/6/Otniel%20Debataraja_3331210040_04.pdf document_url: https://eprints.untirta.ac.id/48633/5/Otniel%20Debataraja_3331210040_05.pdf document_url: https://eprints.untirta.ac.id/48633/7/Otniel%20Debataraja_3331210040_Ref.pdf document_url: https://eprints.untirta.ac.id/48633/8/Otniel%20Debataraja_3331210040_Lamp.pdf document_url: https://eprints.untirta.ac.id/48633/9/Otniel_Debataraja_3331210040_CP.pdf