eprintid: 48585 rev_number: 21 eprint_status: archive userid: 21494 dir: disk0/00/04/85/85 datestamp: 2025-05-14 02:43:26 lastmod: 2025-05-14 02:43:26 status_changed: 2025-05-14 02:43:26 type: thesis metadata_visibility: show contact_email: herlinapebriani1@gmail.com creators_name: Pebriani, Herlina creators_id: 3334220020 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Oediyani, Soesaptri contributors_name: Mufakhir, Fika Rofiek corp_creators: FAKULTAS TEKNIK UNIVERSITAS SULTAN AGENG TIRTAYASA title: STUDI PENGARUH TEMPERATUR DAN WAKTU SERTA KINETIKA TERHADAP EFISIENSI PELINDIAN LOGAM BERHARGA DARI LIMBAH BATERAI LITIUM-ION MENGGUNAKAN DEEP EUTECTIC SOLVENT ispublished: pub subjects: Q1 subjects: QD subjects: TN subjects: TP divisions: Metalurgi full_text_status: restricted keywords: Pelindian, DES, Baterai Li-ion, Kinetika abstract: Permintaan terhadap baterai litium-ion (Li-ion) terus meningkat seiring dengan adopsi teknologi portabel, kendaraan listrik, dan penyimpanan energi. Peningkatan ini berimplikasi pada bertambahnya limbah baterai Li-ion, sehingga upaya daur ulang menjadi penting untuk mengurangi pencemaran lingkungan sekaligus recovery logam-logam berharga seperti litium (Li), kobalt (Co), nikel (Ni), dan mangan (Mn). Hidrometalurgi telah menjadi metode utama daur ulang dengan efisiensi ekstraksi tinggi (>90%). Namun, metode ini memiliki tantangan terkait penggunaan reagen kaustik dan limbah cair. Alternatif reagen yang menjanjikan adalah Deep Eutectic Solvent (DES), pelarut ramah lingkungan yang bersifat non-toksik, biodegradable, dan dapat didaur ulang. Penelitian ini menggunakan DES berbasis Betaine Hydrochloride (BeCl) dan Ethylene Glycol (EG) dengan rasio molar 1:4 sebagai agen pelindian pada limbah katoda baterai Li- ion. Proses dilakukan dengan variasi temperatur (60°C, 100°C, 120°C, 140°C) dan durasi waktu pelindian (1, 4, 7, dan 10 menit) untuk mengoptimalkan ekstraksi logam berharga. Analisis karakterisasi dilakukan menggunakan FE-SEM EDS, XRD, XRF, dan ICP-OES untuk mengetahui morfologi, struktur kristal, serta kandungan logam pada residu dan filtrat. Hasil menunjukkan efisiensi ekstraksi optimal pada temperatur 120°C selama 10 menit, dengan tingkat ekstraksi Ni, Co, Mn, dan Li masing-masing sebesar 99,90%, 99,84%, 99,85%, dan 99,79%. Analisis model kinetika menunjukkan bahwa model difusi lapisan film paling sesuai, dengan energi aktivasi sebesar 6,8 kJ/mol. DES terbukti efektif dalam proses pelindian, menawarkan keunggulan dari segi efisiensi, energi, dan keberlanjutan lingkungan dibandingkan metode konvensional. Temuan ini memperkuat potensi DES sebagai solusi inovatif untuk mendukung daur ulang baterai Li-ion yang ramah lingkungan dan berkelanjutan. date: 2024 date_type: published pages: 162 institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: TEKNIK METALURGI thesis_type: sarjana thesis_name: sarjana referencetext: [1] T. Or, S. W. D. Gourley, K. Kaliyappan, A. Yu, and Z. Chen, “Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook,” Mar. 01, 2020, Blackwell Publishing Inc. doi: 10.1002/cey2.29. [2] P. G. Schiavi et al., “Selective recovery of cobalt from mixed lithium ion battery wastes using deep eutectic solvent,” Chemical Engineering Journal, vol. 417, Aug. 2021, doi: 10.1016/j.cej.2021.129249. [3] L. dan B. K. L. H. dan K. R. I. Direktorat Jenderal Pengelolaan Sampah, “Komposisi Sampah Nasional (2023),” Jakarta, Dec. 2023. doi: https://sipsn.menlhk.go.id/sipsn/public/data/komposisi#parallax. [4] A. Natalia Ghea Puspita, I. Haryanto, A. Mulia Salsabila, A. Hapid Pusat Teknologi Pengembangan Sumberdaya Mineral, and B. Pengkajian dan Penerapan Teknologi, “Peluang Pertumbuhan dan Prospek Pasar Daur Ulang Baterai di Asia Pasifik,” JRP, 2021. [5] R. M. Dias, M. C. da Costa, and Y. P. Jimenez, “Perspectives of Using DES- Based Systems for Solid–Liquid and Liquid–Liquid Extraction of Metals from E-Waste,” Jun. 01, 2022, MDPI. doi: 10.3390/min12060710. [6] C. Liu, J. Lin, H. Cao, Y. Zhang, and Z. Sun, “Recycling of spent lithium- ion batteries in view of lithium recovery: A critical review,” Aug. 10, 2019, Elsevier Ltd. doi: 10.1016/j.jclepro.2019.04.304. [7] F. J. Alguacil, I. Garcia-Diaz, and E. Escudero, “Extraction of indium(III) from sulphuric acid medium by the ionic liquid (PJMTH+HSO4−),” Sep Purif Technol, vol. 211, pp. 764–767, Mar. 2019, doi: 10.1016/j.seppur.2018.10.051. [8] T. Zhang et al., “Efficient leaching of valuable metals from NCM cathode materials by green deep eutectic solvent,” J Clean Prod, vol. 438, Jan. 2024, doi: 10.1016/j.jclepro.2024.140636. [9] X. Xiao et al., “Ultrasound-assisted extraction of metals from Lithium-ion batteries using natural organic acids,” Green Chemistry, vol. 23, no. 21, pp. 8519–8532, 2021, doi: 10.1039/D1GC02693C. [10] M. I. Martín, I. García-Díaz, and F. A. López, “Properties and perspective of using deep eutectic solvents for hydrometallurgy metal recovery,” Nov. 01, 2023, Elsevier Ltd. doi: 10.1016/j.mineng.2023.108306. [11] E. L. Smith, A. P. Abbott, and K. S. Ryder, “Deep Eutectic Solvents (DESs) and Their Applications,” Nov. 12, 2014, American Chemical Society. doi: 10.1021/cr300162p. [12] S. Wang, Z. Zhang, Z. Lu, and Z. Xu, “A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries,” Green Chemistry, vol. 22, no. 14, pp. 4473–4482, Jul. 2020, doi: 10.1039/d0gc00701c. [13] Y. Luo, C. Yin, L. Ou, and C. Zhang, “Highly efficient dissolution of the cathode materials of spent Ni-Co-Mn lithium batteries using deep eutectic solvents,” Green Chemistry, vol. 24, no. 17, pp. 6562–6570, Aug. 2022, doi: 10.1039/d2gc01431a. [14] G. Harper et al., “Recycling lithium-ion batteries from electric vehicles,” Nov. 07, 2019, Nature Publishing Group. doi: 10.1038/s41586-019-1682-5. [15] L. S. Martins, L. F. Guimarães, A. B. Botelho Junior, J. A. S. Tenório, and D. C. R. Espinosa, “Electric car battery: An overview on global demand, recycling and future approaches towards sustainability,” Oct. 01, 2021, Academic Press. doi: 10.1016/j.jenvman.2021.113091. [16] Z. Dobó, T. Dinh, and T. Kulcsár, “A review on recycling of spent lithium- ion batteries,” Dec. 01, 2023, Elsevier Ltd. doi: 10.1016/j.egyr.2023.05.264. [17] F. Arshad et al., “A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries,” Sep. 14, 2020, American Chemical Society. doi: 10.1021/acssuschemeng.0c04940. [18] P. Arora and Z. Zhang, “Battery separators,” Chem Rev, vol. 104, no. 10, pp. 4419–4462, Oct. 2004, doi: 10.1021/cr020738u. [19] J. Xu, H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang, and B. Liang, “A review of processes and technologies for the recycling of lithium-ion secondary batteries,” Mar. 01, 2008. doi: 10.1016/j.jpowsour.2007.11.074. [20] C. Liu, J. Lin, H. Cao, Y. Zhang, and Z. Sun, “Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review,” Aug. 10, 2019, Elsevier Ltd. doi: 10.1016/j.jclepro.2019.04.304. [21] B. Huang, Z. Pan, X. Su, and L. An, “Recycling of lithium-ion batteries: Recent advances and perspectives,” Sep. 30, 2018, Elsevier B.V. doi: 10.1016/j.jpowsour.2018.07.116. [22] P. Meshram, B. D. Pandey, and T. R. Mankhand, “Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects,” Waste Management, vol. 45, pp. 306–313, Feb. 2015, doi: 10.1016/j.wasman.2015.05.027. [23] C. Liu et al., “Ultra-low viscosity betaine hydrochloride-formic acid deep eutectic solvent for leaching critical metals from spent NCM lithium-ion batteries,” J Environ Chem Eng, vol. 12, no. 3, Jun. 2024, doi: 10.1016/j.jece.2024.112586. [24] M. Yu, Z. Zhang, F. Xue, B. Yang, G. Guo, and J. Qiu, “A more simple and efficient process for recovery of cobalt and lithium from spent lithium-ion batteries with citric acid,” Sep Purif Technol, vol. 215, pp. 398–402, May 2019, doi: 10.1016/j.seppur.2019.01.027. [25] S. Suriyanarayanan, M. P. Babu, R. Murugan, D. Muthuraj, K. Ramanujam, and I. A. Nicholls, “Highly Efficient Recovery and Recycling of Cobalt from Spent Lithium-Ion Batteries Using an N-Methylurea-Acetamide Nonionic Deep Eutectic Solvent,” ACS Omega, vol. 8, no. 7, pp. 6959–6967, Feb. 2023, doi: 10.1021/acsomega.2c07780. [26] R. Golmohammadzadeh, F. Rashchi, and E. Vahidi, “Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects,” Waste Management, vol. 64, pp. 244–254, Jun. 2017, doi: 10.1016/j.wasman.2017.03.037. [27] E. L. Smith, A. P. Abbott, and K. S. Ryder, “Deep Eutectic Solvents (DESs) and Their Applications,” Nov. 12, 2014, American Chemical Society. doi: 10.1021/cr300162p. [28] Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, “Deep eutectic solvents: Syntheses, properties and applications,” Chem Soc Rev, vol. 41, no. 21, pp. 7108–7146, Oct. 2012, doi: 10.1039/c2cs35178a. [29] G. Milani et al., “Ultrasound and deep eutectic solvents: An efficient combination to tune the mechanism of steviol glycosides extraction,” Ultrason Sonochem, vol. 69, Dec. 2020, doi: 10.1016/j.ultsonch.2020.105255. [30] F. J. V. Gomez, M. Espino, M. A. Fernández, and M. F. Silva, “A Greener Approach to Prepare Natural Deep Eutectic Solvents,” ChemistrySelect, vol. 3, no. 22, pp. 6122–6125, Jun. 2018, doi: 10.1002/slct.201800713. [31] R. A. Sheldon, “Metrics of Green Chemistry and Sustainability: Past, Present, and Future,” Jan. 02, 2018, American Chemical Society. doi: 10.1021/acssuschemeng.7b03505. [32] F. M. Perna, P. Vitale, and V. Capriati, “Deep eutectic solvents and their applications as green solvents,” Feb. 01, 2020, Elsevier B.V. doi: 10.1016/j.cogsc.2019.09.004. [33] A. P. Abbott, P. M. Cullis, M. J. Gibson, R. C. Harris, and E. Raven, “Extraction of glycerol from biodiesel into a eutectic based ionic liquid,” Green Chemistry, vol. 9, no. 8, pp. 868–87, Aug. 2007, doi: 10.1039/b702833d. [34] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, “Novel solvent properties of choline chloride/urea mixtures,” Chemical Communications, no. 1, pp. 70–71, 2003, doi: 10.1039/b210714g. [35] D. J. G. P. Van Osch, L. F. Zubeir, A. Van Den Bruinhorst, M. A. A. Rocha, and M. C. Kroon, “Hydrophobic deep eutectic solvents as water-immiscible extractants,” Green Chemistry, vol. 17, no. 9, pp. 4518–4521, Jul. 2015, doi: 10.1039/c5gc01451d. [36] O. S. Hammond, D. T. Bowron, and K. J. Edler, “Structure and Properties of ‘type IV’ Lanthanide Nitrate Hydrate:Urea Deep Eutectic Solvents,” ACS Sustain Chem Eng, vol. 7, no. 5, pp. 4932–4940, Mar. 2019, doi: 10.1021/acssuschemeng.8b05548. [37] A. Satlewal, R. Agrawal, S. Bhagia, J. Sangoro, and A. J. Ragauskas, “Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities,” Dec. 01, 2018, Elsevier Inc. doi: 10.1016/j.biotechadv.2018.08.009. [38] J. Wang et al., “Deep Eutectic Systems as Novel Vehicles for Assisting Drug Transdermal Delivery,” Pharmaceutics, vol. 14, no. 11, p. 2265, Oct. 2022, doi: 10.3390/pharmaceutics14112265. [39] Z. Yuan, H. Liu, W. F. Yong, Q. She, and J. Esteban, “Status and advances of deep eutectic solvents for metal separation and recovery,” Green Chemistry, vol. 24, no. 5, pp. 1895–1929, 2022, doi: 10.1039/D1GC03851F. [40] X.-J. Hou, L.-Y. Yu, Y.-X. Wang, K.-J. Wu, and C.-H. He, “Comprehensive Prediction of Densities for Deep Eutectic Solvents: A New Bonding-Group Interaction Contribution Scheme,” Ind Eng Chem Res, vol. 60, no. 35, pp. 13127–13139, Sep. 2021, doi: 10.1021/acs.iecr.1c02260. [41] A. K. Halder, R. Haghbakhsh, I. V. Voroshylova, A. R. C. Duarte, and M. N. D. S. Cordeiro, “Density of deep eutectic solvents: The path forward cheminformatics-driven reliable predictions for mixtures,” Molecules, vol. 26, no. 19, Oct. 2021, doi: 10.3390/molecules26195779. [42] C. Florindo, L. C. Branco, and I. M. Marrucho, “Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents,” Apr. 23, 2019, Wiley-VCH Verlag. doi: 10.1002/cssc.201900147. [43] H. Ghaedi, M. Ayoub, S. Sufian, S. M. Hailegiorgis, G. Murshid, and S. N. Khan, “Thermal stability analysis, experimental conductivity and pH of phosphonium-based deep eutectic solvents and their prediction by a new empirical equation,” Journal of Chemical Thermodynamics, vol. 116, pp. 50–60, Jan. 2018, doi: 10.1016/j.jct.2017.08.029. [44] T. Lemaoui et al., “Prediction of Electrical Conductivity of Deep Eutectic Solvents Using COSMO-RS Sigma Profiles as Molecular Descriptors: A Quantitative Structure-Property Relationship Study,” Ind Eng Chem Res, vol. 59, no. 29, pp. 13343–13354, Jul. 2020, doi: 10.1021/acs.iecr.0c02542. [45] T. H. Ibrahim, M. A. Sabri, N. A. Jabbar, P. Nancarrow, F. S. Mjalli, and I. AlNashef, “Thermal Conductivities of Choline Chloride-Based Deep Eutectic Solvents and Their Mixtures with Water: Measurement and Estimation,” Molecules, vol. 25, no. 17, Sep. 2020, doi: 10.3390/molecules25173816. [46] Y. Dai, J. van Spronsen, G. J. Witkamp, R. Verpoorte, and Y. H. Choi, “Natural deep eutectic solvents as new potential media for green technology,” Anal Chim Acta, vol. 766, pp. 61–68, Mar. 2013, doi: 10.1016/j.aca.2012.12.019. [47] Y. P. Mbous, M. Hayyan, A. Hayyan, W. F. Wong, M. A. Hashim, and C. Y. Looi, “Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges,” Mar. 01, 2017, Elsevier Inc. doi: 10.1016/j.biotechadv.2016.11.006. [48] L. Li et al., “Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process,” J Power Sources, vol. 262, pp. 380– 385, Sep. 2014, doi: 10.1016/j.jpowsour.2014.04.013. [49] F. Faraji, A. Alizadeh, F. Rashchi, and N. Mostoufi, “Kinetics of leaching: A review,” Feb. 01, 2022, De Gruyter Open Ltd. doi: 10.1515/revce-2019- 0073. [50] I. Boukerche, N. Habbache, N. Alane, S. Djerad, and L. Tifouti, “Dissolution of Cobalt from CoO/Al2O3 catalyst with mineral acids,” Ind Eng Chem Res, vol. 49, no. 14, pp. 6514–6520, Jul. 2010, doi: 10.1021/ie901444y. [51] W. Astuti, T. Hirajima, K. Sasaki, and N. Okibe, “Comparison of atmospheric citric acid leaching kinetics of nickel from different Indonesian saprolitic ores,” Hydrometallurgy, vol. 161, pp. 138–151, May 2016, doi: 10.1016/j.hydromet.2015.12.015. [52] S. M. Seyed Ghasemi and A. Azizi, “Alkaline leaching of lead and zinc by sodium hydroxide: Kinetics modeling,” Journal of Materials Research and Technology, vol. 7, no. 2, pp. 118–125, Apr. 2018, doi: 10.1016/j.jmrt.2017.03.005. [53] X. Hou and B. T. Jones, "Inductively coupled plasma/optical emission spectrometry," in Encyclopedia of Analytical Chemistry, 2000, pp. 9468- 9485. [54] S. Ghosh, D. Banji, V. Laxmi Prasanna, B. Sowjanya, P. Srivani, and M. Alagaraja, “Inductively coupled plasma-Optical emission spectroscopy: A review,” 2013. [Online]. Available: https://www.researchgate.net/publication/288811956 [55] P. Acquafredda, “XRF technique,” Physical Sciences Reviews, vol. 4, no. 8, Aug. 2019, doi: 10.1515/psr-2018-0171. [56] J. Epp, “X-Ray Diffraction (XRD) Techniques for Materials Characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Elsevier Inc., 2016, pp. 81–124. doi: 10.1016/B978-0-08-100040-3.00004-3. [57] A. V. Girão, G. Caputo, and M. C. Ferro, “Application of Scanning Electron Microscopy–Energy Dispersive X-Ray Spectroscopy (SEM-EDS),” Comprehensive Analytical Chemistry, vol. 75, pp. 153–168, 2017, doi: 10.1016/bs.coac.2016.10.002. [58] A. Sujatno, R. Salam, B. Bandriyana, and A. Dimyati, "Studi scanning electron microscopy (SEM) untuk karakterisasi proses oxidasi paduan zirkonium," Jurnal Forum Nuklir, vol. 9, no. 1, pp. 44-50, Jun. 2017. [59] S. Ghaderi, B. Ji, D. Michael Veach, A. H. Alissa Park, J. Meng, and W. Zhang, “A comprehensive study on the leaching characteristics and mechanisms of nickel and cobalt from olivine,” Miner Eng, vol. 218, Nov. 2024, doi: 10.1016/j.mineng.2024.108992. [60] Ľ. Popovič, P. Raschman, J. Spišák, A. Fedoročková, and G. Sučik, “Generalized shrinking particle model of leaching: Effect of the order of surface chemical reaction, liquid-to-solid ratio and non-ideal behaviour of the liquid phase,” Hydrometallurgy, vol. 196, Sep. 2020, doi: 10.1016/j.hydromet.2020.105441. [61] S. Cao et al., “Designing Low-Cost, Green, and Recyclable Deep Eutectic Solvents for Selective Separation and Recovery of Valuable Metals from Spent Li-Ion Batteries,” ACS Sustain Chem Eng, vol. 11, no. 48, pp. 16984– 16994, Dec. 2023, doi: 10.1021/acssuschemeng.3c04802. [62] P. Raschman, Ľ. Popovič, A. Fedoročková, M. Kyslytsyna, and G. Sučik, “Non-porous shrinking particle model of leaching at low liquid-to-solid ratio,” Hydrometallurgy, vol. 190, Dec. 2019, doi: 10.1016/j.hydromet.2019.105151. [63] V. Russo, H. Grénman, T. Cogliano, R. Tesser, and T. Salmi, “Advanced Shrinking Particle Model for Fluid-Reactive Solid Systems,” Frontiers in Chemical Engineering, vol. 2, 2020, doi: 10.3389/fceng.2020.577505. [64] C. D’Agostino et al., “Molecular and ionic diffusion in aqueous-deep eutectic solvent mixtures: Probing inter-molecular interactions using PFG NMR,” Physical Chemistry Chemical Physics, vol. 17, no. 23, pp. 15297– 15304, Jun. 2015, doi: 10.1039/c5cp01493j. [65] M. K. Tran, M. T. F. Rodrigues, K. Kato, G. Babu, and P. M. Ajayan, “Deep eutectic solvents for cathode recycling of Li-ion batteries,” Nat Energy, vol. 4, no. 4, pp. 339–345, Apr. 2019, doi: 10.1038/s41560-019-0368-4. [66] Y. Luo, C. Yin, and L. Ou, “Recycling of waste lithium-ion batteries via a one-step process using a novel deep eutectic solvent,” Science of The Total Environment, vol. 902, p. 166095, Dec. 2023, doi: 10.1016/j.scitotenv.2023.166095. [67] W. Zhou, M. Petranikova, and B.-M. Steenari, “Hydrometallurgical Treatment of Spent Lithium-Ion Batteries: A study of optimal conditions for the leaching.”, 2018. [68] B. Beverskog and I. J. C. S. Puigdomenech, “Revised Pourbaix diagrams for nickel at 25–300°C,” Corrosion Science, vol. 39, no. 5, pp. 969–980, 1997. [69] R. Jensen, Recycling of Lithium-Ion Batteries: The Effects of a Reducing Agent on the Efficiency and Kinetics of Metal Leaching, M.S. thesis, Dept. of Chemical Eng., Norwegian Univ. of Sci. and Technol. (NTNU), Trondheim, Norway, 2019. [70] T. Salmi, H. Grénman, J. Wärnå, and D. Y. Murzin, “Revisiting shrinking particle and product layer models for fluid-solid reactions - From ideal surfaces to real surfaces,” Chemical Engineering and Processing: Process Intensification, vol. 50, no. 10, pp. 1076–1084, Oct. 2011, doi: 10.1016/j.cep.2011.05.015. [71] T. Salmi, J. Wärnå, and P. Tolvanen, “Understanding of Solid-Fluid Kinetics and Mass Transfer: From Ideal to Non-ideal Models, From Perfect Spheres to Moon Landscape,” Frontiers in Chemical Engineering, vol. 2, 2020, doi: 10.3389/fceng.2020.00006. [72] Y. Hua et al., “Ionization potential-based design of deep eutectic solvent for recycling of spent lithium ion batteries,” Chemical Engineering Journal, vol. 436, p. 133200, May 2022, doi: 10.1016/j.cej.2021.133200. [73] C. Mwenya and M. M. Mashingaidze, “Leaching of Cobalt from Gypsum Using Nickel Eluate,” in Chemistry for a Clean and Healthy Planet, Springer International Publishing, 2019, pp. 539–565. doi: 10.1007/978-3-030- 20283-5_31. [74] M. Z. Mubarok, D. Muhammad, and W. Fathoni, “Studi Kinetika Pelindian Bijih Nikel Limonit Dari Pulau Halmahera Dalam Larutan Asam Nitrat,” 2016. [Online]. Available: www.ejurnalmaterialmetalurgi.com [75] Y. Hua, “Development of sustainable processes for recycling spent lithium- ion batteries,” Ph.D. dissertation, School of Chemical Engineering, The University of Queensland, 2023. [Online]. Available: https://doi.org/10.14264/37f086a citation: Pebriani, Herlina (2024) STUDI PENGARUH TEMPERATUR DAN WAKTU SERTA KINETIKA TERHADAP EFISIENSI PELINDIAN LOGAM BERHARGA DARI LIMBAH BATERAI LITIUM-ION MENGGUNAKAN DEEP EUTECTIC SOLVENT. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/48585/1/Herlina%20Pebriani_3334200020_01..pdf document_url: https://eprints.untirta.ac.id/48585/2/Herlina%20Pebriani_3334200020_02..pdf document_url: https://eprints.untirta.ac.id/48585/3/Herlina%20Pebriani_3334200020_03..pdf document_url: https://eprints.untirta.ac.id/48585/4/Herlina%20Pebriani_3334200020_04..pdf document_url: https://eprints.untirta.ac.id/48585/5/Herlina%20Pebriani_3334200020_05..pdf document_url: https://eprints.untirta.ac.id/48585/7/Herlina%20Pebriani_3334200020_Fulltext..pdf document_url: https://eprints.untirta.ac.id/48585/8/Herlina%20Pebriani_3334200020_Lamp..pdf document_url: https://eprints.untirta.ac.id/48585/9/Herlina%20Pebriani_3334200020_Ref..pdf