eprintid: 48132 rev_number: 19 eprint_status: archive userid: 11780 dir: disk0/00/04/81/32 datestamp: 2025-04-10 02:03:28 lastmod: 2025-04-10 02:03:28 status_changed: 2025-04-10 02:03:28 type: thesis metadata_visibility: show contact_email: auliya.kemuning.senja@gmail.com creators_name: Senja, Auliya Kemuning creators_id: 3334200058 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Abdul, Aziz contributors_name: Muhammad, Fitrullah contributors_id: 198003072005011002 contributors_id: 197804142006041002 corp_creators: Fakultas Teknik Universitas Sultan Ageng Tirtayasa title: ANALISA PENGARUH HEAT TREATMENT TERHADAP PERUBAHAN SIFAT MEKANIK DAN KINERJA ELEKTRONIK THIN FOIL UNTUK KOMPONEN ELEKTRONIK ispublished: pub subjects: TN divisions: Metalurgi full_text_status: restricted keywords: Thin Foil Stainless Steel 304, Heat treatment, Deformasi Plastis, Sifat Mekanik, Konduktivitas Termal abstract: Perkembangan industri elektronik berlangsung cepat yang dapat dilihat dari semakin banyaknya perangkat baru yang portabel dengan teknologi tinggi. Hal ini menciptakan kebutuhan akan material berukuran kecil dengan sifat mekanik dan kinerja elektronik yang baik untuk meningkatkan efisiensi selama produksi. Namun, pada jenis material tipis deformasi rentan terjadi selama proses produksi yang dapat merusak sifat mekanik material. Untuk meminimalisir dampak deformasi yang terjadi, heat treatment dilakukan. Heat treatment atau perlakuan panas dilakukan pada temperatur 400°C, 650°C, dan 900°C serta pendinginan berbeda yaitu furnace cooling, air cooling, dan water cooling. Thin foil stainless steel 304 digunakan sebagai sampel karena memiliki sifat yang baik, tetapi mudah mengalami deformasi dan kekasaran permukaan. Observasi untuk mengevaluasi pengaruh heat treatment, dengan pemanasan pada berbagai temperatur dan laju pendinginan berbeda terhadap sifat mekanik dan kinerja elektronik thin foil stainless steel 304. Uji tarik dilakuan untuk mengetahui perubahan sifat mekanik sampel, sedangkan untuk kinerja elektronik yang akan diamati adalah konduktivitasnya yang dilakukan dengan metode steady state pada dua pelat panas. Hasil penelitian menunjukkan bahwa semakin tinggi temperatur dan cepat laju pendinginan selama heat treatment maka konduktivitas sampel semakin meningkat, konduktivitas paling baik diperoleh dari sampel water cooling yang dipanaskan pada 900°C dengan nilai konduktivitas 20,38 W/mK dengan kisaran waktu 515 detik. Meskipun konduktivitas meningkat setelah heat treatment, rata-rata nilai sifat mekanik mengalami penurunan, dari uji tarik yang dilakukan UTS tertinggi sampel 847,75 MPa pada sampel air cooling dengan pemanasan 650°C. date: 2025-04-09 date_type: published pages: 92 institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: Jurusan Teknik Metalurgi thesis_type: sarjana thesis_name: sarjana referencetext: [1] D. Sholley, Electronic Materials Science: An Introduction, Wiley, 2017. [2] I. Filippou, V. Tselepi and K. Ellinas, "A Review of Microfabrication Approaches for The Development of Thin, Flattened Heat Pipes and Vapor Chambers for Passive Electronic Cooling Applications," Micro and Nano Engineering, pp. 1-18, 2024. [3] ASTM International, "ASTM A240/A240M - Standard Specification for Chromium-Nickel-Austenitic Stainless Steel Sheet, Strip, Plate, and Coil". [4] F. Tavakkoli, S. Ebrahimi, S. Wang and K. Vafai, "Analysis of Critical Thermal Issues in 3D Integrated Circuits," Heat Mass Transfer, pp. 337-352, 2016. [5] Margono, B. H. Priyambodo and K. C. Nugroho, "Pengaruh Laju Pendingin Pada Proses Heat Treatment Terhadap Kekerasan Dan Struktur Mikro Baja Karbon S45C," Creative Research in Engineering, vol. I, no. 2, pp. 60-66, 2021. [6] A. Aziz and M. Yang, "Effect of Martensitic Transformation and Grain Size on the Surface Roughening Behavior in SUS 304 and SUS 316 Thin Metal Foils," vol. I, pp. 167-182, 2020. [7] T. Muhandarman, Mikroskopi Elektron untuk Karakterisasi Struktur Mikro, Jakarta: PT. Gramedia Pustaka Utama, 2020. [8] W. D. J. Callister and D. G. Rethwisch, Materials Science and Engineering: An Introduction, 10th ed., John Wiley & Sons, 2020. [9] J. Safitri, M. Yusfi and Astuti, "Rancang Bangun Alat Ukur Resistivitas pada Lapisan Tipis Menggunakan Metode 4 Probe Berbasis ATMega8535 dengan Tampilan LCD Karakter 2 X 16," Jurnal Fisika Unand, vol. III, no. 2, pp. 65-73, 2014. [10] Y. Miaoa, M. C. Rajagopalb, K. Valavalab, K. Moa, Z.-G. Meia, S. Bhattacharya, L. Jamison, S. Sinha and A. M. Yacout, "An Exploration of Measuring Lower-Length-Scale Structures in Nuclear Materials: Thermal Conductivity of U-Mo Fuel Particle," Nuclear Materials, pp. 1-22, 2019. [11] A. Al-Saadawi, M. El-Shenawy, A. Ashraf and A. Abdel-Aleem, "Aplication of Thin Foil Stainless Steel in Contruction," vol. 146, 2020. [12] R. McGlen, R. Jachuck and S. Lin, "Integrated Thermal Management Techniques for High Power Electronic Devices," Applied Thermal Engineering, vol. 24, no. 8-9, pp. 1143-1156, 2004. [13] ASTM, "Standard Practice for Operating Salt Spray (Fog) Apparatus. B117-11," 2011. [14] E. Didik, Mardjuki and Jumiadi, "Analisa Pengaruh Deformasi Plastis Terhadap Struktur Mikro dan Kekerasan pada Baja ST 42," Transmisi, vol. XI, no. 1, pp. 19-26, 2015. [15] W. D. J. Callister and D. G. Rethwisch, Materials Science and Engineering An Introduction, 10th ed., Amerika Serikat: ohn Wiley & Sons, Inc, 2018. [16] B. Budiana, F. Nakul, N. Wivanius, B. Sugandi, R. Yolanda, D. Aminullah and I. Saputra, "Analisis Kekasaran Permukaan Besi ASTM36 dengan menggunakan Surftest dan Image –J," Applied Electrical Engineering, vol. IV, no. 2, pp. 49-54, 2020. [17] G. Krauss, Steels: Heat Treatment and Structure, 2nd ed., ASM International, 1994. [18] H. Bhadeshia, Materials Science, 4th ed., Elsevier, 2017. [19] H. Hestiawan, Zuliantoni and D. Febriyanto, "Heat Treatment Effect on Mechanical Properties of JIS SCM4 Steel," Jurnal Ilmiah Teknik Mesin: Rekayasa Mekanik, vol. 3, no. 2, 2019. [20] L. J. da Silva, D. M. Souza, D. B. de Araújo, R. P. Reis and A. Scotti, "Concept and Validation of an Active Cooling Technique to Mitigate Heat Accumulation in WAAM," Advanced Manufacturing Technology, vol. 107, no. 5, 2020. [21] Y. Bai, D. Wang, Y. Yang and H. Wang, "Effect of Heat Treatment on the Microstructure and Mechanical Properties of Maraging Steel by Selective Laser Melting," Materials Science and Engineering: A, vol. 760, pp. 105-117, 2019. [22] Y. Li, L. Wang, X. Wu and J. Li, "Effect of Annealing Temperature on the Microstructure and Mechanical Properties of 304 Stainless Steel Thin Foil," Materials Science and Engineering: A, vol. 725, pp. 501-508, 2018. [23] R. E. Purwanto, Subagiyo, A. Murdani and Listiono, Perlakukan Bahan, 1st ed., Malang: Polinema Press, 2016. [24] H. Godin, J.-D. Mithieux, C. Parrens, G. Badinier, M. Sennour, A. Françoise and G. Lorenzon, "Effects of Cooling Path and Resulting Microstructure on the Impact Toughness of a Hot Stamping Martensitic Stainless Steel," Materials Science and Engineering: A, vol. 742, pp. 597-607, 2020. [25] S. Sharma, A. Dubey and S. Sharma, "Influence of Normalizing on the Electrical Conductivity of Stainless Steel Thin Foils," Materials Research, vol. 14, no. 1, 2015. [26] M. Djuanda and T. B. Prakoso, Struktur Mikro dan Sifat Material, Jakarta: PT Gramedia Pustaka Utama, 2021. [27] A. Gupta, "Effect of Normalizing Temperature on the Microstructure and Mechanical Properties of AISI 304 Stainless Steel Thin Foil," 2016. [28] G. Totten and D. S. MacKenzie, Handbook of Quenching and Distortion Control, 2nd ed., ASM International, 2006. [29] E. Tkachev, S. Borisov, A. Belyakov, T. Kniaziuk, O. Vagina, S. Gaidar and R. Kaibyshev, "Effect of Quenching and Tempering on Structure and Mechanical Properties of a Low-Alloy 0.25C Steel," Materials Science and Engineering: A, vol. 868, 2023. [30] R. A. Linberg, W. A. Craig and L. H. Amstead, Heat Treatment of Metals, ASM International, 1999. [31] D. R. Askeland and W. J. Wright, The Science and Engineering of Materials, 7th ed., Cengage Learning, 2018. [32] S. Sumiyanto and A. Abdunnaser, "Pengaruh Media Pendingin Terhadap Sifat Mekanik dan Struktur Mikro Plat Baja Karbon ASTM A-36," Bina Teknika, vol. 11, 2017. [33] R. Purwanto, “Perlakuan Bahan”, Malang: Polinema Press, 2016. [34] Sumiyanto and A. Abdunnaser, "Pengaruh Media Pendingin Terhadap Sifat Mekanik dan Struktur Mikro Plat Baja Karbon ASTM A-36," Bina Teknika, vol. 11, p. 155, 2017. [35] W. D. Calister and D. G. Rethwisch, Material Science and Engineering: An Introduction, Wiley, 2013. [36] "TWI Global," TWI Limited, [Online]. Available: https://www.twi-global.com/technical-knowledge/faqs/faq-what-are-the-microstructural-constituents-austenite-martensite-bainite-pearlite-and-ferrite. [Accessed 15 December 2024]. [37] R. C. M. C. F. K.H. Buschow, B. Ilschner, E. J. Kramer and S. Mahajan, Encyclopedia of Materials: Science and Technology, vol. XI, Elsevier Science Ltd., 2001. [38] Y. Li, Z. Lu, T. Li, D. Li, J. Lu, P. K. Liaw and Y. Zou, "Effect of drawing speed on surface roughness and mechanical properties of 7050 aluminum alloy thin foil. Materials," 2020. [39] A. Bhowmik and M. A. Khan, "Surface Roughness Analysis and Prediction in Cold Rolling of AA1050 Aluminum Alloy Using Artificial Neural Network," Journal of Materials Processing Technology, vol. 251, pp. 152-162, 2018. [40] X. Y. Li, W. D. Li, Z. G. Yang, C. F. Wang and H. B. Li, "Effect of Tempering Temperature on the Microstructure and Mechanical Properties of CrMnNi Stainless Steel Thin Foils," Materials Science and Engineering: A, vol. 33, pp. 1234-1242, 2023. [41] E. Gadelmawla, M. Koura, T. Maksoud, I. Elewa and H. Soliman, "Roughness parameters," Journal of Material, Process, and Technology, vol. 123, pp. 133-145, 2002. [42] W. Zhang, W. Sun, Z. Chen, F. Liu, L. Ma and Y. Wang, "Effect of Tempering Temperature on the Microstructure and Mechanical Properties of CrMnNi Stainless Steel Thin Foils," Materials Science and Engineering: A, 2023. [43] X. Wang, C. Liu, Y. Qin, Y. Li, Z. Yang, X. Long, M. Wang and F. Zhang, "Effect of Tempering Temperature on Microstructure and Mechanical Properties of Nanostructured Bainitic Steel," Materials Science and Engineering: A, vol. 832, 2022. [44] M. Pang, Z. Xiaoming, P. Chen and X. B. Su, "The Effect of Chemical Composition and Annealing Condition Oon the Microstructure and Tensile Properties of a Resource-Saving Duplex Stainless Steel," Materials Science and Engineering: A, vol. 788, 2020. [45] P. Kejzlar, J. Machuta and I. Nová, "Comparison of the Structure of CuZn40MnAl Alloy Casted into Sand and Metal Moulds," Manufacturing Technology, vol. 17, 2017. [46] Y. Lin, Y. Liu, K. Chou and Q. Shu, " Effects of Oxygen Atmosphere, FeO x and Basicity on Mineralogical Phases of CaO–SiO2–MgO–Al2O3–FeO–P2O5 Steelmaking Slag," Ironmaking & Steelmaking, vol. 46, 2018. [47] A. Bhanage and P. Krishnan, "Sub-zero Quasi-static and Fatigue Behavior of SAE 1040 Automotive Anti-roll Bars in Flexure," SAE International Journal of Passenger Cars - Electronic and Electrical Systems, vol. 16, 2023. [48] Y. Li, Z. Lu, T. Li, D. Li, J. Lu, P. K. Liaw and Y. Zou, "Effects of Surface Severe Plastic Deformation on the Mechanical Behavior of 304 Stainless Steel," Journal of Materials Science, vol. 10, 2020. [49] EUROLAB, "EUROLAB Laboratory Service," 2017. [Online]. Available: https://www.laboratuar.com/id/testler/astm-testleri/astm-e345-metalik-folyo-cekme-testi-icin-standart/. [Accessed 16 May 2024]. [50] Toppr, "Toppr," 2023. [Online]. Available: https://www.toppr.com/guides/physics/elasticity/plastic-deformation/. [Accessed 18 May 2024]. [51] A. Gupta, S. Sharma, A. Jha and A. Goyal, "The Effect of Plastic Deformation and Heat Treatment on the Mechanical Properties of Aluminum Alloy Thin Foils," Materials Science and Engineering:A, vol. 702, pp. 110-119, 2017. citation: Senja, Auliya Kemuning (2025) ANALISA PENGARUH HEAT TREATMENT TERHADAP PERUBAHAN SIFAT MEKANIK DAN KINERJA ELEKTRONIK THIN FOIL UNTUK KOMPONEN ELEKTRONIK. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/48132/1/Auliya%20Kemuning%20Senja_3334200058_Fulltext.pdf document_url: https://eprints.untirta.ac.id/48132/2/Auliya%20Kemuning%20Senja_3334200058_01.pdf document_url: https://eprints.untirta.ac.id/48132/3/Auliya%20Kemuning%20Senja_3334200058_02.pdf document_url: https://eprints.untirta.ac.id/48132/4/Auliya%20Kemuning%20Senja_3334200058_03.pdf document_url: https://eprints.untirta.ac.id/48132/5/Auliya%20Kemuning%20Senja_3334200058_04.pdf document_url: https://eprints.untirta.ac.id/48132/6/Auliya%20Kemuning%20Senja_3334200058_05.pdf document_url: https://eprints.untirta.ac.id/48132/7/Auliya%20Kemuning%20Senja_3334200058_Ref.pdf document_url: https://eprints.untirta.ac.id/48132/8/Auliya%20Kemuning%20Senja_3334200058_Lamp.pdf