eprintid: 47953 rev_number: 19 eprint_status: archive userid: 8867 dir: disk0/00/04/79/53 datestamp: 2025-03-19 05:54:28 lastmod: 2025-03-19 05:54:28 status_changed: 2025-03-19 05:54:28 type: thesis metadata_visibility: show contact_email: 3334200068@untirta.ac.id creators_name: Aryani, Kharisma Shella creators_id: 3334200068 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Trenggono, Adhitya contributors_name: Denny, Yus Rama contributors_id: 197804102003121001 contributors_id: 198206222009121002 corp_creators: Universitas Sultan Ageng Tirtayasa corp_creators: Fakultas Teknik corp_creators: Jurusan Teknik Metalurgi title: PENGARUH TEMPERATUR DAN WAKTU ANNEALING 2 TAHAP SAAT DEPOSISI LAPISAN PEROVSKITE ITO/TiO2/CH3NH3PbI3-XBrX/Spiro-OMeTAD/Ag TERHADAP PERFORMA SEL SURYA ispublished: unpub subjects: TK subjects: TN divisions: Metalurgi full_text_status: restricted keywords: Perovskite Solar Cell, Annealing, PCE abstract: The rapid development of technology, human life has become very dependent on the use of electricity. Perovskite solar cells have attracted widespread attention due to their high efficiency and relatively low production costs. However, optimization of the perovskite layer deposition process is very important to improve the power conversion efficiency (PCE) and stability of perovskite solar cells. Factors that can affect the performance of perovskite solar cells, namely annealing temperature and annealing time. The optimal annealing temperature increases crystallinity and reduces defects in the perovskite structure so that it can increase the short-circuit current density (Jsc) and open-circuit voltage (Voc). The optimal annealing time results in a better recrystallization process so that it can improve the crystal structure. The configuration of the perovskite solar cell sample is ITO/TiO2/CH3NH3PbI3-xBrx/Spiro-OMeTAD/Ag with spin coating and screen printing methods. The spin coating of the perovskite layer is carried out at a speed of 4000 rpm for 30 seconds. This study was conducted with variations in the second stage annealing temperature of 80°C, 100°C, and 120°C and variations in the second stage annealing time of 10 minutes, 20 minutes, and 30 minutes. The characterization carried out in this study used x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis spectroscopy and solar cell I-V test system. Based on the characterization of the solar cell I-V test system, the highest PCE value was 2.5933% at an annealing temperature of 120°C for 30 minutes. The right combination of annealing temperature and annealing time is very important to produce optimal PCE in perovskite solar cells. Keywords: Perovskite Solar Cell, Annealing, PCE. date: 2025-03-19 date_type: completed pages: 104 institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: Teknik Metalurgi thesis_type: sarjana thesis_name: sarjana referencetext: [1] G. A. Widyaningsih, “Ulasan Peraturan Peraturan Presiden Nomor 22 Tahun 2017 Tentang Rencana Umum Energi Nasional,” 2017. [Online]. Available: http://setkab.go.id/. [2] V. Romano et al., “Two-Step Thermal Annealing: An Effective Route for 15 % Efficient Quasi-2D Perovskite Solar Cells,” Chempluschem, vol. 86, no. 8, pp. 1044–1048, Aug. 2021, doi: 10.1002/cplu.202000777. [3] F. Afif dan and A. Martin, “Tinjauan Potensi dan Kebijakan Energi Surya di Indonesia,” Jurnal Engine: Energi, Manufaktur, dan Material, vol. 6, no. 1, pp. 43–52, 2022. [4] N. Amandha Adistia, R. Aditya Nurdiansyah, J. Fariko, and J. Welman Simatupang, “Potensi Energi Panas Bumi, Angin, Dan Biomassa Menjadi Energi Listrik Di Indonesia,” Tesla: Jurnal Teknik Elektro, vol. 22, no. 2, pp. 105–116, Oct. 2020. [5] S. Khatoon et al., “Perovskite solar cell’s efficiency, stability and scalability: A review,” Jan. 01, 2023, KeAi Communications Co. doi: 10.1016/j.mset.2023.04.007. [6] M. I. H. Ansari, A. Qurashi, and M. K. Nazeeruddin, “Frontiers, opportunities, and challenges in perovskite solar cells: A critical review,” Jun. 01, 2018, Elsevier B.V. doi: 10.1016/j.jphotochemrev.2017.11.002. [7] G. Schileo and G. Grancini, “Halide perovskites: current issues and new strategies to push material and device stability,” JPhys Energy, vol. 2, no. 2, Apr. 2020, doi: 10.1088/2515-7655/ab6cc4. [8] N. Shibayama, S. Fukumoto, H. Sugita, H. Kanda, and S. Ito, “Influence of transparent conductive oxide layer on the inverted perovskite solar cell using PEDOT: PSS for hole transport layer,” Mater Res Bull, vol. 106, pp. 433–438, Oct. 2018, doi: 10.1016/j.materresbull.2018.06.037. [9] K. Valadi, S. Gharibi, R. Taheri-Ledari, S. Akin, A. Maleki, and A. E. Shalan, “Metal oxide electron transport materials for perovskite solar cells: a review,” Jun. 01, 2021, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s10311-020-01171-x. [10] N. Li et al., “A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells,” Sci China Mater, vol. 63, no. 2, pp. 207–215, Feb. 2020, doi: 10.1007/s40843-019-9586-x. [11] A. K. Jena, A. Kulkarni, and T. Miyasaka, “Halide Perovskite Photovoltaics: Background, Status, and Future Prospects,” Chem Rev, vol. 119, no. 5, pp. 3036–3103, Mar. 2019, doi: 10.1021/acs.chemrev.8b00539. [12] Y. Tu et al., “Modulated CH3NH3 PbI3-x Brx film for efficient perovskite solar cells exceeding 18%,” Sci Rep, vol. 7, Mar. 2017, doi: 10.1038/srep44603. [13] J. Y. Seo et al., “Dopant Engineering for Spiro-OMeTAD Hole-Transporting Materials towards Efficient Perovskite Solar Cells,” Adv Funct Mater, vol. 31, no. 45, Nov. 2021, doi: 10.1002/adfm.202102124. [14] D. G. Lee, M. C. Kim, S. Wang, B. J. Kim, Y. S. Meng, and H. S. Jung, “Effect of Metal Electrodes on Aging-Induced Performance Recovery in Perovskite Solar Cells,” ACS Appl Mater Interfaces, vol. 11, no. 51, pp. 48497–48504, Dec. 2019, doi: 10.1021/acsami.9b14619. [15] P. Roy, N. Kumar Sinha, S. Tiwari, and A. Khare, “A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status,” Mar. 01, 2020, Elsevier Ltd. doi: 10.1016/j.solener.2020.01.080. [16] J. Hidalgo, A. F. Castro-Méndez, and J. P. Correa-Baena, “Imaging and Mapping Characterization Tools for Perovskite Solar Cells,” Aug. 01, 2019, Wiley-VCH Verlag. doi: 10.1002/aenm.201900444. [17] Fidya Ayuningtyas, “Pengaruh Temperatur Dan Waktu Annealing 2 Tahap Pada Lapisan Perovskite Terhadap Peningkatan Performa Sel Surya Perovskite Dengan Konfigurasi ITO/PCBM/CH3NH3PbI3-xClx/PEDOT:PSS/Ag,” Sultan Ageng Tirtayasa University, 2023. [18] X. Li, Y. Chen, L. Li, and J. Huang, “Perovskite thin film consisting with one-dimensional nanowires,” Materials, vol. 11, no. 9, Sep. 2018, doi: 10.3390/ma11091759. [19] B. S. Swain, A. Rahim, S. Singh, and J. Lee, “Microstructures, structural, optical, and photovoltaic characteristics of mixed halide perovskite nanowires,” Appl Phys A Mater Sci Process, vol. 127, no. 9, Sep. 2021, doi: 10.1007/s00339-021-04823-z. [20] G. Verma and M. Mishra, “Development And Optimization Of Uv-Vis Spectroscopy-A Review,” World J Pharm Res, vol. 7, no. 11, pp. 1170–1180, 2018, doi: 10.20959/wjpr201811-12333. [21] M. Taguchi, A. Suzuki, T. Oku, N. Ueoka, S. Minami, and M. Okita, “Effects of annealing temperature on decaphenylcyclopentasilane-inserted CH3NH3PbI3 perovskite solar cells,” Chem Phys Lett, vol. 737, Dec. 2019, doi: 10.1016/j.cplett.2019.136822. [22] Z. Zhou et al., “The Effect of Annealing Pressure on Perovskite Films and Its Thin-Film Field-Effect Transistors’ Performance,” Physica Status Solidi (A) Applications and Materials Science, vol. 216, no. 22, Nov. 2019, doi: 10.1002/pssa.201900434. [23] R. K. Singh, R. Kumar, N. Jain, J. Singh, and S. K. Mishra, “Structural and thermodynamic aspects of organic-inorganic mixed halide (CH3NH3PbI3-xBrx) perovskite,” in AIP Conference Proceedings, American Institute of Physics Inc., May 2018. doi: 10.1063/1.5032825. [24] A. K. Al-Mousoi, M. S. Mehde, and A. M. Al-Gebori, “Annealing temperature effects on the performance of the perovskite solar cells,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Apr. 2020. doi: 10.1088/1757-899X/757/1/012039. [25] T. Su, X. Li, Y. Zhang, F. Zhang, and Z. Sheng, “Temperature-modulated crystal growth and performance for highly reproducible and efficient perovskite solar cells,” Physical Chemistry Chemical Physics, vol. 19, no. 20, pp. 13147–13152, 2017, doi: 10.1039/c7cp00563f. [26] H. Mehdi, A. Mhamdi, and A. Bouazizi, “Effect of annealing treatment on the properties of inverted solar cells based on mixed halide perovskite,” Physica E Low Dimens Syst Nanostruct, vol. 119, May 2020, doi: 10.1016/j.physe.2020.114000. [27] M. H. Miah, M. U. Khandaker, M. B. Rahman, M. Nur-E-Alam, and M. A. Islam, “Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: issues and prospects,” May 16, 2024, Royal Society of Chemistry. doi: 10.1039/d4ra01640h. [28] D. O. Oyewole et al., “Annealing effects on interdiffusion in layered FA-rich perovskite solar cells,” AIP Adv, vol. 11, no. 6, Jun. 2021, doi: 10.1063/5.0046205. citation: Aryani, Kharisma Shella (2025) PENGARUH TEMPERATUR DAN WAKTU ANNEALING 2 TAHAP SAAT DEPOSISI LAPISAN PEROVSKITE ITO/TiO2/CH3NH3PbI3-XBrX/Spiro-OMeTAD/Ag TERHADAP PERFORMA SEL SURYA. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/47953/1/Kharisma%20Shella%20Aryani_3334200068_Fulltext.pdf document_url: https://eprints.untirta.ac.id/47953/2/Kharisma%20Shella%20Aryani_3334200068_01.pdf document_url: https://eprints.untirta.ac.id/47953/3/Kharisma%20Shella%20Aryani_3334200068_02.pdf document_url: https://eprints.untirta.ac.id/47953/4/Kharisma%20Shella%20Aryani_3334200068_03.pdf document_url: https://eprints.untirta.ac.id/47953/5/Kharisma%20Shella%20Aryani_3334200068_04.pdf document_url: https://eprints.untirta.ac.id/47953/6/Kharisma%20Shella%20Aryani_3334200068_05.pdf document_url: https://eprints.untirta.ac.id/47953/7/Kharisma%20Shella%20Aryani_3334200068_Ref.pdf document_url: https://eprints.untirta.ac.id/47953/8/Kharisma%20Shella%20Aryani_3334200068_Lamp.pdf document_url: https://eprints.untirta.ac.id/47953/9/Kharisma%20Shella%20Aryani_3334200068_CP.pdf