eprintid: 47689 rev_number: 18 eprint_status: archive userid: 8454 dir: disk0/00/04/76/89 datestamp: 2025-03-05 02:09:53 lastmod: 2025-03-05 02:09:53 status_changed: 2025-03-05 02:09:53 type: thesis metadata_visibility: show contact_email: bismoap@gmail.com creators_name: PRAKOSO, BISMO ADITIYA creators_id: 3334200037 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Alfirano, Alfirano contributors_name: Senopati, Galih contributors_id: 197406292003121001 contributors_id: 198907012014011001 corp_creators: UNIVERSITAS SULTAN AGENG TIRTAYASA corp_creators: FAKULTAS TEKNIK corp_creators: JURUSAN TEKNIK METALURGI title: STUDI PENGARUH TEMPERATUR ANNEALING DAN DOPING PADA Ti1-xZrxNi0,95Cu0,05Sn TERHADAP SIFAT TERMOELEKTRIK UNTUK APLIKASI TERMOELEKTRIK GENERATOR ispublished: pub subjects: T1 subjects: TN subjects: TS divisions: Metalurgi full_text_status: restricted keywords: Annealing, Doping, Koefesien seebeck, Konduktivitas listrik, Konduktivitas termal, Termoelektrik abstract: Permintaan energi yang semakin meningkat dan bersamaan dengan peningkatan populasi serta perkembangan industri, menyebabkan tekanan besar pada sumber daya energi konvensional seperti minyak, batu bara dan gas. Dalam dunia industri, penggunaan energi panas adalah energi yang paling sering digunakan dari total penggunaan energi dengan mencapai 90%. Hasil dari pemakaian energi panas umumnya menghasilkan limbah panas sebagai produk sampingan dari proses produksinya yang dibuang langsung ke udara tanpa pemanfaatan yang baik. Oleh karena itu, terdapat inovasi dengan memanfaatkan limbah panas tersebut menjadi energi listrik. Salah satu teknologi yang dapat memanfaatkan sumber limbah panas tersebut adalah Termoelektrik. Termoelektrik merupakan sebuah teknologi yang dapat mengubah suatu energi panas menjadi energi listrik atau sebaliknya secara langsung. Material yang digunakan pada termoelektrik umumnya merupakan paduan TiNiSn yang memiliki sifat semikonduktor. Akan tetapi, paduan TiNiSn mampu menghasilkan nilai efesiensi termoelektrik sekitar 0,3 hingga 0,4 dikarenakan memiliki konduktivitas listrik rendah dan konduktivitas termal yang terlalu tinggi dalam pengaplikasian termoelektrik. Sehingga untuk memperbaiki efesiensinya dilakukan percobaan parameter sintesis dan penambahan unsur lain (doping) pada paduan TiNiSn. Pada penelitian ini menggunakan proses annealing dengan temperatur 700℃, 800℃, dan 900℃ selama 168 jam. Sedangkan doping menggunakan variasi Zirkonium sebesar 0,01% at, 0,03% at, dan 0,05% at. Hasil penelitian ini menunjukkan bahwa temperatur annealing hingga 900℃ selama 168 jam belum memberikan pengaruh signifikan untuk membuat TiNiSn sebagai fasa tunggal. Nilai perhitungan efesiensi termoelektrik didapatkan bahwa perlakuan temperatur annealing 900℃ dan komposisi doping Zirkonium 0,03% at paling baik untuk termoelektrik generator yang pengaplikasiannya hingga 650 K (350℃) karena menghasilkan nilai 2,62. date: 2025-08-15 date_type: published pages: 135 institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: TEKNIK METALURGI thesis_type: sarjana thesis_name: sarjana referencetext: [1] K. Lee, D. Lee, W. Chen, Y. Lin, D. Luo, and Y. Park, “An overview of commercialization and marketization of thermoelectric generators for low-temperature waste heat recovery,” iScience 26, 107874, pp. 1–21, 2023. [2] D. D. Cahya, Joko, A. I. Agung, and Endryansyah, “Peningkatan Penyerapan Panas Matahari pada Prototipe Pembangkit Listrik Termoelektrik Generator Menggunakan Penghantar Panas Kuningan dengan Pelapisan Warna Hitam,” J. Tek. Elektro, vol. 11, no. 3, pp. 379–385, 2021. [3] M. Khalid, M. Syukri, and M. Gapy, “Pemanfaatan Energi Panas Sebagai Pembangkit Listrik Alternatif Berskala Kecil Dengan Menggunakan Termoelektrik,” J. Tek. Elektro, vol. 1, no. 3, pp. 57–62, 2016. [4] H. Jouhara et al., “Thermoelectric generator (TEG) technologies and applications,” Int. J. Thermofluids, vol. 9, 2021, [5] J. S. Young and R. G. Reddy, “Processing and Thermoelectric Properties of TiNiSn Materials: A Review,” J. Mater. Eng. Perform., vol. 28, no. 10, pp. 5917–5930, 2019, doi: 10.1007/s11665-019-04386-4. [6] K. Chen et al., “Fast synthesis of n-type half-heusler TiNiSn thermoelectric material,” Scr. Mater., vol. 191, pp. 71–75, 2021, doi: 10.1016/j.scriptamat.2020.09.010. [7] J. L. Chen et al., “Strategy of Extra Zr Doping on the Enhancement of Thermoelectric Performance for TiZrxNiSn Synthesized by a Modified Solid-State Reaction,” ACS Appl. Mater. Interfaces, vol. 13, no. 41, pp. 48801–48809, 2021, doi: 10.1021/acsami.1c14723. [8] M. Supriadi, “Introduction to Electrical Engineering Systems: Semiconductor Energy Band Concepts,” Int. J. Soc. Rev., vol. 2, pp. 2333–2346, 2024, doi: 10.1109/TE.1967.4320237. [9] J. Cayssol and J. N. Fuchs, “Topological and geometrical aspects of band theory,” JPhys Mater., vol. 4, no. 3, 2021, doi: 10.1088/2515-7639/abf0b5. [10] H. J. Goldsmid, "Optimisation and selection of semiconductor thermoelements,” Springer Series in Materials Science., vol. 121. 2016. [11] D. T. Morelli, “Thermoelectric Devices,” Digit. Encycl. Appl. Phys., no. April, 2003, doi: 10.1002/3527600434.eap514. [12] A. Page, P. F. P. Poudeu, and C. Uher, “A first-principles approach to half-Heusler thermoelectrics: Accelerated prediction and understanding of material properties,” J. Mater., vol. 2, no. 2, pp. 104–113, 2016, doi: 10.1016/j.jmat.2016.04.006. [13] E. E. Levin et al., “Enhancing thermoelectric properties through control of Nickel Interstitials and phase separation in Heusler/Half-Heusler TiNi1.1Sn composites,” Materials (Basel)., vol. 11, no. 6, pp. 1–12, 2018, doi: 10.3390/ma11060903. [14] W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T. M. Tritt, “Recent advances in nanostructured thermoelectric half-heusler compounds,” Nanomaterials, vol. 2, no. 4, pp. 379–412, 2012, doi: 10.3390/nano2040379. [15] A. Wederni, J. Daza, W. Ben Mbarek, J. Saurina, and J. Josep Sunol, “Crystal Structure and Properties of Heusler Alloys: A Comprehensive Review,” Int. J. Online Pedagog. Course Des., vol. 13, no. 1, pp. 1–15, 2022, doi: 10.4018/ijopcd.315816. [16] Y. Sadia, D. Lumbroso, and Y. Gelbstein, “High-ZT Due to the Influence of Copper in Ti(Ni1-xCux)Sn,” Materials (Basel)., vol. 16, no. 5, 2023, doi: 10.3390/ma16051902. [17] G. Rogl and P. F. Rogl, “Development of Thermoelectric Half-Heusler Alloys over the Past 25 Years,” Crystals, vol. 13, no. 7, 2023, doi: 10.3390/cryst13071152. [18] S. A. Barczak et al., “Grain-by-Grain Compositional Variations and Interstitial Metals - A New Route toward Achieving High Performance in Half-Heusler Thermoelectrics,” ACS Appl. Mater. Interfaces, vol. 10, no. 5, pp. 4786–4793, 2018, doi: 10.1021/acsami.7b14525. [19] G. Mesaritis, I. Ioannou, A. Delimitis, E. Hatzikraniotis, Y. Gelbstein, and T. Kyratsi, “n-type (Zr,Ti)NiSn half Heusler materials via mechanical alloying: Structure, Sb-doping and thermoelectric properties,” J. Phys. Chem. Solids, vol. 167, no. April, pp. 3–11, 2022, doi: 10.1016/j.jpcs.2022.110735. [20] H. J. Goldsmid and J. W. Sharp, “Estimation of the thermal band gap of a semiconductor from Seebeck measurements,” J. Electron. Mater., vol. 28, no. 7, pp. 869–872, 1999, doi: 10.1007/s11664-999-0211-y. [21] Y. Lei, Y. Li, L. Xu, J. Yang, R. Wan, and H. Long, “Microwave synthesis and sintering of TiNiSn thermoelectric bulk,” J. Alloys Compd., vol. 660, pp. 166–170, 2016, doi: 10.1016/j.jallcom.2015.11.089. [22] G. Gottstein, "Physical Foundations of Materials Science", Springer. 2004. [23] S. Xie, H. Zhu, X. Zhang, and H. Wang, “A brief review on the recent development of phonon engineering and manipulation at nanoscales,” Int. J. Extrem. Manuf., vol. 6, no. 1, 2023, doi: 10.1088/2631-7990/acfd68. [24] T. M. Tritt and N. Q. Kanatzidis, “Thermoelectric Materials-New Direction and Approaches,” Materials Research Society, vol. 478., 1977. [25] E. Karimi-Sibaki, A. Kharicha, M. Wu, A. Ludwig, and J. Bohacek, “A Parametric Study of the Vacuum Arc Remelting (VAR) Process: Effects of Arc Radius, Side-Arcing, and Gas Cooling,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 51, no. 1, pp. 222–235, 2020, doi: 10.1007/s11663-019-01719-5. [26] O. H. Campanella, "Heat Treatment: Principles and Techniques"., In Encyclopedia of Food and Health (pp. 316–327). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00371-8 2015. [27] J. S. Young, R. G. Reddy, M. Weaver, and D. Fonseca, “Synthesis and Characterization of TiNi1+xSn Thermoelectric Alloys,” 2017. [28] G. Yu et al., “Study on Enhancing the Thermoelectric Properties of Ti2CrSn Alloys”, Metals, 11(10). pp. 1–10, 2021. [29] S. Kianwimol, R. Sakdanuphab, N. Chanlek, A. Harnwunggmoung, and A. Sakulkalavek, “Effect of annealing temperature on thermoelectric properties of bismuth telluride thick film deposited by DC magnetron sputtering,” Surf. Coatings Technol., vol. 393, no. March, p. 125808, 2020, doi: 10.1016/j.surfcoat.2020.125808. [30] F. Aversano et al., “Role of secondary phases and thermal cycling on thermoelectric properties of TiNiSn half-Heusler alloy prepared by different processing routes,” Intermetallics, vol. 127, no. October, p. 106988, 2020, doi: 10.1016/j.intermet.2020.106988. [31] N. Verma, J. E. Douglas, S. Krämer, T. M. Pollock, R. Seshadri, and C. G. Levi, “Microstructure Evolution of Biphasic TiNi1+xSn Thermoelectric Materials,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 47, no. 8, pp. 4116–4127, 2016, doi: 10.1007/s11661-016-3549-9. [32] Y. Gelbstein et al., “Thermoelectric properties of spark plasma sintered composites based on TiNiSn half-Heusler alloys,” J. Mater. Res., vol. 26, no. 15, pp. 1919–1924, 2011, doi: 10.1557/jmr.2011.107. [33] M. Gurth, V. Romaka, J. Vrestal, G. Giester, E. Bauer, and P. Rogl, “On the Constitution and Thermodynamic Modelling of the System Ti-Ni-Sn”, RSC Advances, 5(112), 92270–92291. 2015, doi: 10.1039/C5RA16074J. [34] H. Tu et al., “Phase Equilibria of the Al-Ni-Sn System at 600 and 800 °C,” J. Phase Equilibria Diffus., vol. 41, no. 1, pp. 56–65, 2020, doi: 10.1007/s11669-020-00780-x. [35] Y. Kimura, C. Asami, Y. W. Chai, and Y. Mishima, “Thermoelectric performance of half-Heusler TiNiSn alloys fabricated by solid-liquid reaction sintering,” Mater. Sci. Forum, vol. 654–656, no. June 2010, pp. 2795–2798, 2010, doi: 10.4028/www.scientific.net/MSF.654-656.2795. [36] H. Wu, G. Niu, J. Cao, and M. Yang, “Annealing of strain-induced martensite to obtain micro/nanometre grains in austenitic stainless,” Mater. Sci. Technol. (United Kingdom), vol. 33, no. 4, pp. 480–486, 2017, doi: 10.1080/02670836.2016.1229092. [37] W. Fu et al., “Effect of Ti content on the metallization layer and copper / alumina brazed joint,” Ceram. Int., vol. 43, no. 16, pp. 13206–13213, 2017, doi: 10.1016/j.ceramint.2017.07.016. [38] S. A. Barczak, B. F. Kennedy, I. da Silva, and J. W. G. Bos, “Mechanistic Insights into the Formation of Thermoelectric TiNiSn from In Situ Neutron Powder Diffraction,” Chem. Mater., vol. 35, no. 9, pp. 3694–3704, 2023, doi: 10.1021/acs.chemmater.3c00393. [39] S. R. Mishra et al., “Lowering thermal conductivity in thermoelectric Ti2-xNiCoSnSb half Heusler high entropy alloys,” J. Mater. Sci., vol. 58, no. 26, pp. 10736–10752, 2023, doi: 10.1007/s10853-023-08664-4. [40] T. Chen, S. Tsai, and T. Zeng, “Effects of Annealing Temperature on Thermoelectric Properties and Microstructure of Ag0.6Pb18Sb5Te20,” Sensors and Materials, Vol. 29, No. 11 (2017) 1637–1643, pp. 1637–1643, 2017. [41] P. Wen, B. Duan, P. Zhai, P. Li, and Q. Zhang, “Effect of thermal annealing on the microstructure and thermoelectric properties of nano-TiN/Co4Sb11.5Te0.5 composites,” J. Mater. Sci. Mater. Electron., vol. 24, no. 12, pp. 5155–5161, 2013, doi: 10.1007/s10854-013-1538-y. [42] O. Sologub, L. Salamakha, B. Stöger, Y. Michiue, and T. Mori, “Zr doped β-rhombohedral boron: Widely variable Seebeck coefficient and structural properties,” Acta Mater., vol. 122, pp. 378–385, 2017, doi: 10.1016/j.actamat.2016.10.014. [43] L. Ma, Q. Liu, H. Zhu, L. Liu, C. Kang, and Z. Ji, “Flower-like Ni3Sn2@Ni3S2 with core–shell nanostructure as electrode material for supercapacitors with high rate and capacitance,” J. Colloid Interface Sci., vol. 626, pp. 951–962, 2022, doi: 10.1016/j.jcis.2022.07.016. [44] A. Berche and P. Jund, “Oxidation of half-Heusler NiTiSn materials: Implications for thermoelectric applications,” Intermetallics, vol. 92, no. June 2017, pp. 62–71, 2018, doi: 10.1016/j.intermet.2017.09.014. [45] S. R. Mishra et al., “Lowering thermal conductivity in thermoelectric Ti2−xNiCoSnSb half Heusler high entropy alloys,” J. Mater. Sci., vol. 58, no. 26, pp. 10736–10752, 2023, doi: 10.1007/s10853-023-08664-4. funders: BADAN RISET DAN INOVASI NASIONAL funders: PUSAT RISET METALURGI citation: PRAKOSO, BISMO ADITIYA (2025) STUDI PENGARUH TEMPERATUR ANNEALING DAN DOPING PADA Ti1-xZrxNi0,95Cu0,05Sn TERHADAP SIFAT TERMOELEKTRIK UNTUK APLIKASI TERMOELEKTRIK GENERATOR. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/47689/1/Bismo%20Aditiya%20Prakoso_3334200037_Fulltext.pdf document_url: https://eprints.untirta.ac.id/47689/2/Bismo%20Aditiya%20Prakoso_3334200037_01.pdf document_url: https://eprints.untirta.ac.id/47689/3/Bismo%20Aditiya%20Prakoso_3334200037_02.pdf document_url: https://eprints.untirta.ac.id/47689/4/Bismo%20Aditiya%20Prakoso_3334200037_03.pdf document_url: https://eprints.untirta.ac.id/47689/5/Bismo%20Aditiya%20Prakoso_3334200037_04.pdf document_url: https://eprints.untirta.ac.id/47689/6/Bismo%20Aditiya%20Prakoso_3334200037_05.pdf document_url: https://eprints.untirta.ac.id/47689/7/Bismo%20Aditiya%20Prakoso_3334200037_Ref.pdf document_url: https://eprints.untirta.ac.id/47689/8/Bismo%20Aditiya%20Prakoso_3334200037_Lamp.pdf