@phdthesis{eprintuntirta45864, year = {2025}, note = {Penelitian ini membahas penggunaan panel surya sebagai sumber energi terbarukan yang potensial karena melimpahnya energi matahari. Namun, sel surya sering mengalami masalah seperti retak, kerusakan saat pengiriman, dan cacat mikro yang sulit dideteksi. Untuk mengatasi masalah ini, penelitian ini mengembangkan alat pendeteksi kecacatan pada modul surya menggunakan modul sensor magnetic hall effect berjenis KY-024 yang terhubung dengan bluetooth. Sensor ini bekerja dengan mendeteksi medan magnet pada busbar yang dialiri oleh arus. Alat ini terdiri dari beberapa komponen, termasuk ESP32-C3 sebagai mikrokontroler, dan Bluetooth HC-05 untuk mengirimkan data ke laptop melalui fitur Data Streamer pada Microsoft Excel. Pengujian dilakukan sebanyak satu kali pada kondisi indoor, serta lima kali pengujian pada kondisi outdoor, yaitu pada pukul 11 siang hingga pukul 3 sore. Hasil pengujian menunjukkan alat ini mampu mendeteksi dan mengukur medan magnet pada satu baris modul surya. Hasil analisis membuktikan bahwa terdapat dua busbar terdegradasi pada sel 4, sehingga membuat pendistribusian arus pada sel 4 menjadi tidak merata. Perbedaan kuat medan magnet 0,6-0,8 x 10{\^{ }}-3 {\ensuremath{\mu}}T antara busbar yang normal dan terdegradasi. Nilai tertinggi yang dihasilkan oleh sel abnormal adalah 3,3 x 10{\^{ }}-3 {\ensuremath{\mu}}T, sedangkan nilai terendah yang dihasilkan oleh sel abnormal adalah 1,2 x 10{\^{ }}-3 {\ensuremath{\mu}}T. Penelitian ini mengindikasikan bahwa semakin tinggi arus yang mengalir, maka akan semakin besar medan magnet yang terdeteksi.}, school = {Fakultas Teknik Universitas Sultan Ageng Tirtayasa}, title = {Perancangan Fault Detection pada 1 Row Photovoltaic Module Menggunakan Sensor Magnetic Hall Effect Berbasis Bluetooth}, author = {Sheila Hafidah Rahmawati}, month = {January}, url = {https://eprints.untirta.ac.id/45864/}, abstract = {This study examines the use of solar panels as a potential renewable energy source due to the abundant availability of solar energy. However, solar cells often encounter issues such as cracks, damage during shipping, and micro-defects that are difficult to detect. To address these issues, this research developed a defect detection tool on photovoltaic module using a KY-024 magnetic hall effect sensor module connected via Bluetooth. The sensor works by detecting the magnetic field on the busbar carrying electric current. The device consists of several components, including an ESP32-C3 as the microcontroller and a Bluetooth HC-05 module for transmitting data to a laptop via the Data Streamer feature in Microsoft Excel. Testing was conducted once under indoor conditions and repeated five times in outdoor conditions, specifically from 11 a.m. to 3 p.m. The results indicate that this tool is able detect and measure the magnetic field on a single row of solar modules. This study analyzes that two degraded busbars were identified in cell 4, resulting in uneven current distribution within the cell. The magnetic field strength difference between normal and degraded busbars ranged from 0,6 to 0,8 x 10{\^{ }}-3 {\ensuremath{\mu}}T. The highest magnetic field detected in the abnormal cell was 3,3 x 10{\^{ }}-3 {\ensuremath{\mu}}T, while the lowest was 1,2 x 10{\^{ }}-3 {\ensuremath{\mu}}T. This study confirms that higher current flow corresponds to a stronger detected magnetic field.} }