relation: https://eprints.untirta.ac.id/45732/ title: Sistem Akuisisi dan Klasifikasi Aritmia Menggunakan Machine Learning creator: Rifqi Fauzi, Muhammad subject: QA Mathematics subject: QA75 Electronic computers. Computer science subject: QA76 Computer software subject: RZ Other systems of medicine description: Arrhythmia is a disruption in heart rhythm that can indicate one of the deadliest diseases in the world which is heart disease. Diagnosing arrhythmia is often done by recording and analyzing signals using an ECG (Electrocardiogram). However, ECG devices are expensive, and interpreting the waveforms requires specialized expertise. Therefore, a compact, affordable, and portable device was developed to acquire signals and classify arrhythmias. The Hilbert Transform is employed for detecting R-peaks, which serve as annotation points for RR interval segmentation during the preprocessing stage. These segmented intervals are then used as input for arrhythmia classification using machine learning. The classification model achieved an accuracy of 98.11%, with an average test accuracy of 98.2% on respondent data. date: 2025-01-24 type: Thesis type: NonPeerReviewed format: text language: id identifier: https://eprints.untirta.ac.id/45732/1/Muhammad%20Rifqi%20Fauzi_3332190034_Fulltext.pdf format: text language: id identifier: https://eprints.untirta.ac.id/45732/2/Muhammad%20Rifqi%20Fauzi_3332190034_01.pdf format: text language: id identifier: https://eprints.untirta.ac.id/45732/3/Muhammad%20Rifqi%20Fauzi_3332190034_02.pdf format: text language: id identifier: https://eprints.untirta.ac.id/45732/9/Muhammad%20Rifqi%20Fauzi_3332190034_03.pdf format: text language: id identifier: https://eprints.untirta.ac.id/45732/10/Muhammad%20Rifqi%20Fauzi_3332190034_04.pdf format: text language: id identifier: https://eprints.untirta.ac.id/45732/5/Muhammad%20Rifqi%20Fauzi_3332190034_05.pdf format: text language: id identifier: https://eprints.untirta.ac.id/45732/6/Muhammad%20Rifqi%20Fauzi_3332190034_Ref.pdf format: text language: id identifier: https://eprints.untirta.ac.id/45732/7/Muhammad%20Rifqi%20Fauzi_3332190034_Lamp.pdf format: text language: id identifier: https://eprints.untirta.ac.id/45732/8/Muhammad%20Rifqi%20Fauzi_3332190034_CP.pdf identifier: Rifqi Fauzi, Muhammad (2025) Sistem Akuisisi dan Klasifikasi Aritmia Menggunakan Machine Learning. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa.