eprintid: 44864 rev_number: 24 eprint_status: archive userid: 19062 dir: disk0/00/04/48/64 datestamp: 2024-12-24 09:42:11 lastmod: 2024-12-24 09:42:11 status_changed: 2024-12-24 09:42:11 type: thesis metadata_visibility: show contact_email: 3334200101@untirta.ac.id creators_name: Ilhami, Zaidan creators_id: 3334200101 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: Alfirano, Alfirano contributors_name: Senopati, Galih contributors_id: 197406292003121001 contributors_id: 198907012014011001 corp_creators: Universitas Sultan Ageng Tirtayasa corp_creators: Fakultas Teknik corp_creators: Jurusan Teknik Metalurgi title: Pengaruh Perlakuan Panas Terhadap Ketahanan Oksidasi Temperatur Tinggi Paduan Ti-6Al-5Nb-3Sn-1Zr-0.5Si Untuk Aplikasi High Pressure Compressor Blade Dalam Jet Engine Turbine ispublished: pub subjects: T1 subjects: TL subjects: TS subjects: U1 divisions: Metalurgi full_text_status: public keywords: Kekerasan, Oksidasi, Perlakuan panas, Temperatur Tinggi, Ti-6Al-4V abstract: Material yang digunakan dalam mesin jet tentunya harus memiliki sifat mekanik yang baik dan ketahanan oksidasi yang baik pada saat terkena temperatur tinggi. Paduan komersial seperti Ti-6Al-4V memiliki keterbatasan, yakni ketahanan oksidasi pada temperatur tinggi yang buruk. Temperatur maksimum pada paduan titanium Ti-6Al-4V hanya dapat dibawah 350°C. Paduan Ti-6Al-5Nb-3Sn-1Zr-0,5Si merupakan paduan yang ada dalam penelitian ini sebagai solusi atas permasalahan tersebut. Paduan ini merupakan paduan near-α titanium yang mengandung unsur seperti Al, Nb, Sn, Zr, dan Si yang diketahui dapat meningkatkan ketahanan oksidasi dan sifat mekanik. Selain itu, perlakuan panas dapat mempengaruhi sifat mekanik dan ketahanan oksidasi melalui perubahan struktur mikro. Tujuan penelitian pada kali ini adalah mengetahui pengaruh perlakuan panas terhadap struktur mikro, kekerasan paduan dan ketahanan oksidasi. Pembuatan sampel dilakukan dengan menggunakan alat VAR Furnace dengan vacuum argon. Kemudian, dilakukan perlakuan panas yaitu solution treatment dan aging treatment. Untuk mengetahui nilai kekerasan menggunakan mesin uji kekerasan vickers. Terakhir untuk mengetahui ketahanan oksidasi menggunakan furnace dengan temperatur yang berbeda yaitu 600°C, 650°C, dan 700°C selama 50 jam setiap masing-masing temperatur. Paduan Ti-6Al-5Nb-3Sn-1Zr-0,5Si menunjukkan nilai kekerasan dan ketahanan oksidasi yang lebih baik dibandingkan dengan paduan komersial Ti-6Al-4V. Nilai kekerasan tertinggi terdapa pada sampel aging treatment sebesar 447,63 HVN. Untuk ketahanan oksidasi, pada temperatur 700°C pertambahan berat oksida pada sampel aging treatment sebesar 1,9 mg/cm², lebih rendah dibandingkan dengan as-cast sebesar 2,6 mg/cm² dan solution treatment sebesar 3,4 mg/cm² dan Ti-6Al-4V sebesar 10,7 mg/cm². date: 2024-10 date_type: published institution: Fakultas Teknik Universitas Sultan Ageng Tirtayasa department: Teknik Metalurgi thesis_type: sarjana thesis_name: sarjana referencetext: [1] Ikuhiro Inagaki, Tsutomu Takechi, Yoshihisa Shirai, and Nozomu Ariyasu, “Application and features of titanium for the aerospace industry,” pp. 22–27, 2014. [2] J. Dai, J. Zhu, C. Chen, and F. Weng, “High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review,” 2016, Elsevier Ltd. doi: 10.1016/j.jallcom.2016.06.212. [3] I. Aniekan, O. Ikechukwu, P. O. Ebunilo, and E. Ikpe, “Material Selection for High Pressure (HP) Compressor Blade of an Aircraft Engine,” International Journal of Advanced Materials Research, vol. 2, no. 4, pp. 59–65, 2016, [Online]. Available: http://www.aiscience.org/journal/ijamrhttp://creativecommons.org/licenses/by/4.0/ [4] N. Vaché, Y. Cadoret, B. Dod, and D. Monceau, “Modeling the oxidation kinetics of titanium alloys: Review, method and application to Ti-64 and Ti-6242s alloys,” Corros Sci, vol. 178, Jan. 2021, doi: 10.1016/j.corsci.2020.109041. [5] D. Rugg, M. Dixon, and J. Burrows, “High-temperature application of titanium alloys in gas turbines. Material life cycle opportunities and threats – an industrial perspective,” Materials at High Temperatures, vol. 33, no. 4–5, pp. 536–541, Jun. 2016, doi: 10.1080/09603409.2016.1184423. [6] B. Sefer, Oxidation and alpha-case phenomena in titanium alloys used in aerospace industry : Ti-6Al-2Sn-4Zr-2Mo and Ti-6Al-4V. Luleå University of Technology, 2014. [7] S. Perosanz, M. Viscasillas, N. Martin Piris, M. Hokka, and D. Barba, “On the effect of the microstructure on the dynamic behaviour of Ti-6Al-4V,” EPJ Web Conf, vol. 250, p. 02013, 2021, doi: 10.1051/epjconf/202125002013. [8] A. Pathania, S. A. Kumar, B. K. Nagesha, S. Barad, and T. N. Suresh, “Reclamation of titanium alloy based aerospace parts using laser based metal deposition methodology,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 4886–4892. doi: 10.1016/j.matpr.2021.01.354. [9] F. Gemma, R. Joan Josep, S. Birhan, P. Robert, A. Marta-Lena, and M. Antonio, “Oxidation Behavior Of Ti6Al4V Alloy Exposed To Isothermal And Cyclic Thermal Treatments,” pp. 1573–1579, 2017. [10] Prof. Caballero, Encyclopedia of Materials: Metals and Alloys: Metals and Alloys, 1st ed. Elsevier, 2021. Accessed: Jul. 17, 2024. [Online]. Available: https://www.sciencedirect.com/referencework/9780128197332/encyclopedia-of-materials-metals-and-alloys [11] G. Rhys Watkins and Mp. Thesis, “Development of a High Temperature Titanium Alloy for Gas Turbine Applications,” MPhil thesis, University of Sheffield, 2015. [12] J. Dai, J. Zhu, L. Zhuang, and S. Li, “Effect Of Surface Aluminizing On Long-Term High-Temperature Thermal Stability Of TC4 Titanium Alloy,” Surface Review and Letters, vol. 23, no. 2, Apr. 2016, doi: 10.1142/S0218625X15501024. [13] Y. Pan et al., “Effect of Sn Addition on Densification and Mechanical Properties of Sintered TiAl Base Alloys,” Jinshu Xuebao/Acta Metallurgica Sinica, vol. 54, no. 1, pp. 93–99, Jan. 2018, doi: 10.11900/0412.1961.2017.00143. [14] Y. Pan et al., “Effect of Sn addition on the high-temperature oxidation behavior of high Nb-containing TiAl alloys,” Corros Sci, vol. 166, Apr. 2020, doi: 10.1016/j.corsci.2020.108449. [15] J. Y. Xu, Z. Z. Shi, Z. B. Zhang, H. G. Huang, and X. F. Liu, “Significant enhancement of high temperature oxidation resistance of pure titanium via minor addition of Nb and Si,” Corros Sci, vol. 166, Apr. 2020, doi: 10.1016/j.corsci.2020.108430. [16] Y. Song et al., “Effect of Nb content on cyclic oxidation behavior of as-cast Ti-1100 alloys,” Materials, vol. 13, no. 5, Mar. 2020, doi: 10.3390/ma13051082. [17] F. Sharifi et al., “The effect of different heat treatment cycle on hot corrosion and oxidation behavior of Ti-6Al-4V,” Mater Res Express, vol. 6, no. 11, Oct. 2019, doi: 10.1088/2053-1591/ab4cb4. [18] K. V Sai Srinadh and V. Singh, “Oxidation behaviour of the near α α-titanium alloy IMI 834,” Bulletin of Materials Science, 347-354. 2004. [19] S. Amalina Azahra et al., “The Effect of Solution Treatment Temperature on Hardness, Microstructure, and Corrosion Resistance of Ti-6Al-4V ELI,” Defect and Diffusion Forum, 2024, [Online]. Available: www.scientific.net. [20] P. Pinke Óbudai Egyetem, Ľ. Čaplovič, and T. Anna Kovacs Óbudai Egyetem, “The Influence Of Heat Treatment On The Microstructure Of The Casted Ti6Al4V Titanium Alloy,” 2011, [Online]. Available: https://www.researchgate.net/publication/266870574 [21] Cahya Sutowo, Fendy Rokmanto, Merliana K Waluyo, and Alfirano, “Pengaruh Variasi Temperatur Solution Treatment Terhadap Struktur Mikro Dan Kekuatan Paduan Ti-6Al-6Nb Untuk Aplikasi Biomedis,” Seminar Sains dan Teknologi 2017, 2017. [22] H. Warlimont, “Titanium and titanium alloys,” in Springer Handbooks, Springer, 2018, pp. 195–206. doi: 10.1007/978-3-319-69743-7_7. [23] Adrian. P. Mouritz, “Introduction to aerospace materials,” in Titanium alloys for aerospace structures and engines, Elsevier, 2012, pp. 202–223. doi: 10.1533/9780857095152.202. [24] H. A. Kishawy and A. Hosseini, “Materials Forming, Machining and Tribology Machining Difficult-to-Cut Materials Basic Principles and Challenges,” 2019. [Online]. Available: http://www.springer.com/series/11181 [25] K. K. Sankaran and R. S. Mishra, “Titanium Alloys,” in Metallurgy and Design of Alloys with Hierarchical Microstructures, Elsevier, 2017, pp. 177–288. doi: 10.1016/b978-0-12-812068-2.00005-9. [26] C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications. Wiley, 2003. doi: 10.1002/3527602119. [27] E. O. Ezugwu and Z. M. Wang, “Materials Processing Technology Titanium alloys and their machinability a review,” 1997. [28] X. Yang and C. R. Liu, “Machining titanium and its alloys,” Machining Science and Technology, vol. 3, no. 1, pp. 107–139, 1999, doi: 10.1080/10940349908945686. [29] ASM International, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2. ASM International, 1990. doi: 10.31399/asm.hb.v02.9781627081627. [30] M. Motyka, K. Kubiak, J. Sieniawski, and W. Ziaja, “Phase Transformations and Characterization of α + β Titanium Alloys,” in Comprehensive Materials Processing, vol. 2, Elsevier Ltd, 2014, pp. 7–36. doi: 10.1016/B978-0-08-096532-1.00202-8. [31] P. Singh, H. Pungotra, and N. S. Kalsi, “On the characteristics of titanium alloys for the aircraft applications,” in Materials Today: Proceedings, Elsevier Ltd, 2017, pp. 8971–8982. doi: 10.1016/j.matpr.2017.07.249. [32] M. Peters, J. Kumpfert, C. H. Ward, and C. Leyens, “Titanium alloys for aerospace applications,” Jun. 01, 2003. doi: 10.1002/adem.200310095. [33] Ezekiel Enterprises, “Jet Turbine Engine Fundamentals ,” in Continuing Education For Profesional Engineers, LLc, 2019. [34] E. Van Der Weide, G. Kalitzin, J. Schlüter, and J. J. Alonso, “Unsteady Turbomachinery Computations Using Massively Parallel Platforms,” 2006. [35] T. Okura, “Materials for Aircraft Engines,” 2015, Accessed: Nov. 14, 2024. [Online]. Available: http://animagraffs.com/inside-a-jet-engine/ [36] H. Guleryuz and H. Cimenoglu, “Oxidation of Ti-6Al-4V alloy,” J Alloys Compd, vol. 472, no. 1–2, pp. 241–246, Mar. 2009, doi: 10.1016/j.jallcom.2008.04.024. [37] R. R. Boyer, “A An overview on the use of titanium in the aerospace industry,” Materials Science and Engineering, vol. 213, no. 1–2, pp. 103–114, 1996. [38] Rajan T.V., C.P Sharma, and Ashok Sharma, Heat Trearment Principles and Thecniques Second Edition. Eastern Economi Edition. New Delhi, 2011. [39] H. Galarraga, R. J. Warren, D. A. Lados, R. R. Dehoff, M. M. Kirka, and P. Nandwana, “Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM),” 2017. [Online]. Available: https://www.elsevier.com/open-access/userlicense/1.0/ [40] Jr. Matthew J. Donachie, “Titanium: A Technical Guide, 2nd Edition,” 2000. [Online]. Available: www.iran-mavad.com [41] B. D. Venkatesh, D. L. Chen, and S. D. Bhole, “Effect of heat treatment on mechanical properties of Ti-6Al-4V ELI alloy,” Materials Science and Engineering: A, vol. 506, no. 1–2, pp. 117–124, Apr. 2009, doi: 10.1016/j.msea.2008.11.018. [42] Vahid Salimian Rizi, “Ce Pte Us Pt,” Mater. Res. Express, pp. 1–12, 2019. [43] A. S. Khanna, “High-Temperature Oxidation,” in Handbook of Environmental Degradation of Materials, vol. 2, Elsevier, 2018, pp. 117–132. doi: 10.1016/B978-0-323-52472-8.00006-X. [44] E. Dong, W. Yu, Q. Cai, L. Cheng, and J. Shi, “High-Temperature Oxidation Kinetics and Behavior of Ti–6Al–4V Alloy,” Oxidation of Metals, vol. 88, no. 5–6, pp. 719–732, Dec. 2017, doi: 10.1007/s11085-017-9770-0. [45] Sanjaya Okky and A.P Bayuseno, “Analisis Kegagalan Material Pipa Ferrule Nickel Alloy N6025 Pada Waste Heat Boiler Akibat Suhu Tinggi Berdasarkan Pengujian : Mikrografi Dan Kekerasan,” Jurnal Teknik Mesin, vol. 2, pp. 33–39, Oct. 2014. [46] A. Krisnawan, “Karakterisasi Sampel Paduan Magnesium Jenis AZ9 1D Dengan Berbagai Variasi Waktu Milling Menggunakan X-Ray Fluoresence (XRF) Dan X-Ray Difraction (XRD)”. Jakarta: Universitas Islam Negeri Syarif Hidayatullah, 2009. [47] Y. Yuan, N. Zhang, W. Tao, X. Cao, and Y. He, “Fatty acids as phase change materials: A review,” 2014. doi: 10.1016/j.rser.2013.08.107. [48] M. Nakai, M. Niinomi, H. Liu, and T. Kitashima, “Suppression of Grain Boundary α Formation by Addition of Silicon in a Near-β Titanium Alloy,” Mater Trans, vol. 60, no. 9, pp. 1749–1754, Jul. 2019, doi: 10.2320/matertrans.ME201920. [49] J. Mantione, M. Garcia-Avila, M. Arnold, D. Bryan, and J. Foltz, “Properties of Novel High Temperature Titanium Alloys for Aerospace Applications,” MATEC Web of Conferences, vol. 321, p. 04006, 2020, doi: 10.1051/matecconf/202032104006. [50] N. Eshawish, S. Malinov, and W. Sha, “Effect of Solution Treatment and Cooling Rate on the Microstructure and Hardness of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting Before and After Hot Isostatic Pressing Treatment,” J Mater Eng Perform, vol. 31, no. 5, pp. 3550–3558, May 2022, doi: 10.1007/s11665-021-06489-3. [51] F. Rokhmanto, H. Arief, Alfirano, and C. Sutowo, “Characteristic of Ti-6Al-6Nb alloys following solution treatment with cryogenic cooling for implant applications,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jul. 2019. doi: 10.1088/1757-899X/541/1/012043. [52] T. Grosdidier, Y. Combres, E. Gautier, and M.-J. Philippe, “Effect of Microstructure Variations on the Formation of Deformation-Induced Martensite and Associated Tensile Properties in a Metastable Ti Alloy,” Metallurgical And Materials , 2000. [53] Ritupurna Sahoo and Abu Syed Kabir, TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. in The Minerals, Metals & Materials Series. Cham: Springer International Publishing, 2020. doi: 10.1007/978-3-030-36296-6. [54] J. Lin et al., “Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a β type Ti-Ta-Hf-Zr alloy,” RSC Adv, vol. 7, no. 20, pp. 12309–12317, 2017, doi: 10.1039/c6ra28464g. [55] L. E. Murr et al., “Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications,” Jan. 2009. doi: 10.1016/j.jmbbm.2008.05.004. [56] Tiara Destia Ramadhan, Analisis Variasi Temperatur Solution Treatment Terhadap Perubahan Struktur Mikro, Kekerasan dan Ketahanan Korosi Paduan Ti-6Al-7Nb Untuk Aplikasi Implan Gigi. Jakarta: Universitas Islam Negeri Syarif Hidayatullah, 2019. [57] R. N. Elshaer, S. El-Hadad, and A. Nofal, “Influence of heat treatment processes on microstructure evolution, tensile and tribological properties of Ti6Al4V alloy,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-38250-2. [58] E. P. Utomo, I. Kartika, and A. Anawati, “Effect of Sn on mechanical hardness of as-cast Ti-Nb-Sn alloys,” in AIP Conference Proceedings, American Institute of Physics Inc., May 2018. doi: 10.1063/1.5038328. [59] A. Sharma, J. N. Waddell, K. C. Li, L. A Sharma, D. J. Prior, and W. J. Duncan, “Is titanium–zirconium alloy a better alternative to pure titanium for oral implant? Composition, mechanical properties, and microstructure analysis,” Saudi Dental Journal, vol. 33, no. 7, pp. 546–553, Nov. 2021, doi: 10.1016/j.sdentj.2020.08.009. [60] A. M. Chaze and C. Coddet, “Influence of alloying elements on the dissolution of oxygen in the metallic phase during the oxidation of titanium alloys,” J Mater Sci, vol. 22, pp. 1206–1214, 1987. [61] M. Yoshihara and K. Miura, “Effects of Nb addition on oxidation behavior of TiAl,” Intermetallics (Barking), vol. 3, pp. 351–363, 1995. [62] X. Jin et al., “Oxidation resistance of powder metallurgy Ti—45Al—10Nb alloy at high temperature,” International Journal of Minerals, Metallurgy and Materials, vol. 29, no. 12, pp. 2232–2240, Dec. 2015, doi: 10.1007/s12613-021-2320-4. [63] Y. Yang et al., “Effects of Ga, Sn Addition and Microstructure on Oxidation Behavior of Near-α Ti Alloy,” Oxidation of Metals, vol. 88, no. 5–6, pp. 583–598, Dec. 2017, doi: 10.1007/s11085-017-9741-5. [64] S. Matsunaga, A. Serizawa, and Y. Yamabe-Mitarai, “Effect of Zr on microstructure and oxidation behavior of α and α + α2 Ti-Al-Nb alloys,” Mater Trans, vol. 57, no. 11, pp. 1902–1907, 2016, doi: 10.2320/matertrans.MAW201603. [65] K. Aniołek, M. Kupka, M. Łuczuk, and A. Barylski, “Isothermal oxidation of Ti-6Al-7Nb alloy,” Vacuum, vol. 114, pp. 114–118, 2015, doi: 10.1016/j.vacuum.2015.01.016. [66] Y. Yang et al., “Effect of grain size on oxidation resistance of unalloyed titanium,” in Materials Science Forum, Trans Tech Publications Ltd, 2017, pp. 2187–2191. doi: 10.4028/www.scientific.net/MSF.879.2187. [67] S. Parizia et al., “Effect of heat treatment on microstructure and oxidation properties of Inconel 625 processed by LPBF,” J Alloys Compd, vol. 846, Dec. 2020, doi: 10.1016/j.jallcom.2020.156418. [68] K. Zhang, L. Zhang, and J. Li, “The Effect of Refined Coherent Grain Boundaries on High-Temperature Oxidation Behavior of TiAl-Based Alloys through Cyclic Heat Treatment,” Metals (Basel), vol. 14, no. 5, May 2024, doi: 10.3390/met14050521. [69] G. Mi, K. Yao, P. Bai, C. Cheng, and X. Min, “High temperature oxidation and wear behaviors of Ti–V–Cr fireproof titanium alloy,” Metals (Basel), vol. 7, no. 6, Jun. 2017, doi: 10.3390/met7060226. [70] W. Peng, W. Zeng, Y. Zhang, C. Shi, B. Quan, and J. Wu, “The effect of colored titanium oxides on the color change on the surface of Ti-5Al-5Mo-5V-1Cr-1Fe alloy,” J Mater Eng Perform, vol. 22, no. 9, pp. 2588–2593, Sep. 2013, doi: 10.1007/s11665-013-0573-4. [71] S. A. Hamdan, I. M. Ibrahim, and I. M. Ali, “Comparison Of Anatase And Rutile TiO2 Nanostructure For Gas Sensing Application,” 2020. [72] S. A. Kim, Sk. K. Hussain, M. A. Abbas, and J. H. Bang, “High-temperature solid-state rutile-to-anatase phase transformation in TiO2,” J Solid State Chem, vol. 315, p. 123510, Nov. 2022, doi: 10.1016/j.jssc.2022.123510. [73] J. Dai, J. Zhu, L. Zhuang, and S. Li, “Effect Of Surface Aluminizing On Long-Term High-Temperature Thermal Stability Of TC4 Titanium Alloy,” Surface Review and Letters, vol. 23, no. 2, Apr. 2016, doi: 10.1142/S0218625X15501024. [74] W. Chen et al., “Oxidation mechanism of a near β-Ti alloy,” Mater Des, vol. 223, Nov. 2022, doi: 10.1016/j.matdes.2022.111144. [75] B. F. . Romanowicz and Matthew. Laudon, Nanotechnology 2008 : materials, fabrication, particles, and characterization : technical proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show : Boston, June 1-5, 2008 : NSTI Nanotech. Nano Science and Technology Institute ; CRC Press, 2008. [76] S. Wang, Y. Liang, H. Sun, X. Feng, and C. Huang, “Oxygen induced phase transformation in tc21 alloy with a lamellar microstructure,” Metals (Basel), vol. 11, no. 1, pp. 1–13, Jan. 2021, doi: 10.3390/met11010163. [77] F. S. Ahmed, M. A. El-Zomor, M. S. A. Ghazala, and R. N. Elshaer, “Impact of thermal oxidation parameters on micro-hardness and hot corrosion of Ti-6Al-3Mo-2Nb-2Sn-2Zr-1.5Cr alloy,” Sci Rep, vol. 13, no. 1, p. 11249, Jul. 2023, doi: 10.1038/s41598-023-38216-4. [78] D. Whitney, “Ceramic Cutting Tools,” in Comprehensive Hard Materials, Elsevier, 2014, pp. 491–505. doi: 10.1016/B978-0-08-096527-7.00037-4. [79] F. H. Latief, E. S. M. Sherif, A. S. Wismogroho, W. B. Widayatno, and H. S. Abdo, “The cyclic oxidation and hardness characteristics of thermally exposed titanium prepared by inductive sintering-assisted powder metallurgy,” Crystals (Basel), vol. 10, no. 2, Feb. 2020, doi: 10.3390/cryst10020104. funders: Badan Riset dan Inovasi Nasional citation: Ilhami, Zaidan (2024) Pengaruh Perlakuan Panas Terhadap Ketahanan Oksidasi Temperatur Tinggi Paduan Ti-6Al-5Nb-3Sn-1Zr-0.5Si Untuk Aplikasi High Pressure Compressor Blade Dalam Jet Engine Turbine. S1 thesis, Fakultas Teknik Universitas Sultan Ageng Tirtayasa. document_url: https://eprints.untirta.ac.id/44864/1/Zaidan%20Ilhami_3334200101_Fulltext.pdf document_url: https://eprints.untirta.ac.id/44864/2/Zaidan%20Ilhami_3334200101_01.pdf document_url: https://eprints.untirta.ac.id/44864/3/Zaidan%20Ilhami_3334200101_02.pdf document_url: https://eprints.untirta.ac.id/44864/4/Zaidan%20Ilhami_3334200101_03.pdf document_url: https://eprints.untirta.ac.id/44864/5/Zaidan%20Ilhami_3334200101_04.pdf document_url: https://eprints.untirta.ac.id/44864/6/Zaidan%20Ilhami_3334200101_05.pdf document_url: https://eprints.untirta.ac.id/44864/7/Zaidan%20Ilhami_3334200101_Ref.pdf document_url: https://eprints.untirta.ac.id/44864/8/Zaidan%20Ilhami_3334200101_Lamp.pdf document_url: https://eprints.untirta.ac.id/44864/9/Zaidan%20Ilhami_3334200101_CP.pdf