eprintid: 43706 rev_number: 27 eprint_status: archive userid: 18125 dir: disk0/00/04/37/06 datestamp: 2024-11-11 11:51:37 lastmod: 2024-11-11 11:51:37 status_changed: 2024-11-11 11:51:37 type: thesis metadata_visibility: show creators_name: RAMADAYANTI, FITRIA creators_id: 3334170070 contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_type: http://www.loc.gov/loc.terms/relators/THS contributors_name: ALFIRANO, ALFIRANO contributors_name: USWATUN HASANAH, INDAH contributors_id: 197406292003121001 contributors_id: 199012142019032022 corp_creators: UNIVERSITAS SULTAN AGENG TIRTAYASA corp_creators: FAKULTAS TEKNIK corp_creators: JURUSAN TEKNIK METALURGI title: PENGARUH WAKTU DAN TEMPERATUR PERLAKUAN PERMUKAAN TERHADAP NILAI KEKERASAN PADUAN As-cast CoCrMo UNTUK APLIKASI IMPLAN ispublished: pub subjects: TN subjects: TS divisions: Metalurgi full_text_status: restricted abstract: Paduan CoCrMo merupakan paduan biokompatibilitas yang menjadi salah satu paduan terpenting dalam aplikasi ortopedi, terutama sebagai bahan implan pada sendi pinggul dan lutut. Namun, paduan ini menghasilkan jumlah partikel aus halus yang tinggi dan memicu respon imun inflamasi terkait kegagalan implan. Penelitian ini bertujuan untuk mengetahui proses dan variasi yang lebih mempengaruhi nilai kekerasan as-cast CoCrMo. date: 2024 date_type: published pages: 100 institution: FAKULTAS TEKNIK UNIVERSITAS SULTAN AGENG TIRTAYASA department: TEKNIK METALURGI thesis_type: sarjana thesis_name: sarjana referencetext: [1] A. L. Jardini et al., “Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing,” J. Cranio-Maxillofacial Surg., vol. 42, no. 8, pp. 1877–1884, 2014, doi: 10.1016/j.jcms.2014.07.006. [2] M. Mears, P. Brindley, I. Baxter, R. Maheswaran, and A. Jorgensen, “Neighbourhood greenspace influences on childhood obesity in Sheffield, UK,” Pediatr. Obes., vol. 15, no. 7, pp. 1–11, 2020, doi: 10.1111/ijpo.12629. [3] M. Geetha, A. K. Singh, R. Asokamani, and A. K. Gogia, “Ti based biomaterials, the ultimate choice for orthopaedic implants - A review,” Prog. Mater. Sci., vol. 54, no. 3, pp. 397–425, 2009, doi: 10.1016/j.pmatsci.2008.06.004. [4] A. J. Festas, A. Ramos, and J. P. Davim, “Medical devices biomaterials – A review,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 234, no. 1, pp. 218–228, 2020, doi: 10.1177/1464420719882458. [5] C. M. Agrawal, J. L. Ong, M. R. Appleford, and G. Mani, Introduction to Biomaterials: Basic Theory with Engineering Applications. in Cambridge Texts in Biomedical Engineering. Cambridge University Press, 2014. [Online]. Available: https://books.google.co.id/books?id=hTRaAQAAQBAJ [6] C. Valero-Vidal, L. Casabn-Julin, I. Herraiz-Cardona, and A. Igual-Muñoz, “Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance,” Mater. Sci. Eng. C, vol. 33, no. 8, pp. 4667–4676, Dec. 2013, doi: 10.1016/j.msec.2013.07.041. [7] D. A. Prihantoko, “Characterization of CoCrMo alloy with titanium nitride and hydroxyapatite-chitosan coating,” 2011, [Online]. Available: http://repository.ipb.ac.id/handle/123456789/51457 [8] M. B. Nasab and M. R. Hassan, “Metallic Biomaterials of Knee and Hip-A Review,” 2010. [Online]. Available: http://www.sbaoi.org [9] S. Hidayatullah and F. Rokhmanto, “Struktur Mikro dan Sifat Mekanis Paduan Co-Cr-Mo,” in 3rd Biomaterial Conference 2015, Jakarta, 2020, pp. 0–7. [Online]. Available: https://www.researchgate.net/publication/342330662 [10] Alfirano, “Analisis Deformasi Paduan Co-Cr-Mo Sebagai Material Implant,” J. Transm., vol. 4, no. 2, pp. 427–440, 2008. [11] B. Kaya, S. Yilmaz, and C. Ergun, “Ion nitriding of CoCrMo alloys,” Defect Diffus. Forum, vol. 297–301, pp. 82–87, 2010, doi: 10.4028/www.scientific.net/DDF.297-301.82. [12] S. Mischler and A. I. Muñoz, “Wear of CoCrMo alloys used in metal-on-metal hip joints: A tribocorrosion appraisal,” Wear, vol. 297, no. 1–2, pp. 1081–1094, 2013, doi: 10.1016/j.wear.2012.11.061. [13] M. A. Koronfel et al., “Understanding the reactivity of CoCrMo-implant wear particles,” npj Mater. Degrad., vol. 2, no. 1, pp. 1–5, 2018, doi: 10.1038/s41529-018-0029-2. [14] J. Black, Biological performance of materials: fundamentals of biocompatibility. Crc Press, 2005. [15] I. Milošev and H. H. Strehblow, “The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution,” Electrochim. Acta, vol. 48, no. 19, pp. 2767–2774, 2003, doi: 10.1016/S0013-4686(03)00396-7. [16] O. Öztürk, U. ̌ur Türkan, and A. E. Eroǧlu, “Metal ion release from nitrogen ion implanted CoCrMo orthopedic implant material,” Surf. Coatings Technol., vol. 200, no. 20–21, pp. 5687–5697, 2006, doi: 10.1016/j.surfcoat.2005.08.113. [17] P. Puspitasari, A. Andoko, H. Suryanto, P. Risdanareni, and S. Yudha, “Hardness improvement on low carbon steel using pack carbonitriding method with holding time variation,” MATEC Web Conf., vol. 101, no. SICEST 2016, p. 01012, Mar. 2017, doi: 10.1051/matecconf/201710101012. [18] F. Rokhmanto, C. Sutowo, and I. Kartika, “Influence Of Carbon and Nitrogen Addition On The Corrosion Resistance Of Co-28Cr-6Mo-0,8Si-0,8Mn-0,4Fe-0,2Ni Alloys,” Widyariset, vol. 4, no. 1, p. 1, May 2018, doi: 10.14203/widyariset.4.1.2018.1-8. [19] A. International, “ASM International Handbook Vol. 4 Heat Treating,” 1991. [20] R. Liu, X. Li, X. Hu, and H. Dong, “Surface modification of a medical grade Co-Cr-Mo alloy by low-temperature plasma surface alloying with nitrogen and carbon,” Surf. Coatings Technol., vol. 232, pp. 906–911, Oct. 2013, doi: 10.1016/j.surfcoat.2013.06.122. [21] J. Cassar, B. Mallia, A. Karl, and J. Buhagiar, “EIS of carburised CoCrMo: Evolution of parameters characterising the metal-electrolyte interface,” Surf. Coatings Technol., vol. 292, pp. 90–98, Apr. 2016, doi: 10.1016/j.surfcoat.2016.03.033. [22] Y. Dong et al., “Towards near-permanent CoCrMo prosthesis surface by combining micro-texturing and low temperature plasma carburising,” J. Mech. Behav. Biomed. Mater., vol. 55, pp. 215–227, Mar. 2016, doi: 10.1016/j.jmbbm.2015.10.023. [23] E. Kaivosoja et al., “Materials used for hip and knee implants,” in Wear of Orthopaedic Implants and Artificial Joints, Elsevier, 2013, pp. 178–218. doi: 10.1533/9780857096128.1.178. [24] D. R. Unune, G. R. Brown, and G. C. Reilly, “Thermal based surface modification techniques for enhancing the corrosion and wear resistance of metallic implants: A review,” Vacuum, vol. 203. Elsevier Ltd, Sep. 01, 2022. doi: 10.1016/j.vacuum.2022.111298. [25] E. Bettini, Influence of carbides and nitrides on corrosion initiation of advanced alloys: A local probing study. 2013. [Online]. Available: http://www.diva-portal.org/smash/record.jsf?pid=diva2:651807 [26] T. Narushima, K. Ueda, and Alfirano, “Co-Cr Alloys as Effective Metallic Biomaterials,” 2015, pp. 157–178. doi: 10.1007/978-3-662-46836-4_3. [27] B. Mandeep Chauhan and F. Bahbou, “Microstructural characterization of cobalt chromium (ASTM F75) cubes produced by EBM technique Influence of carbon and nitrogen content as well as hot isostatic pressing,” Chalmers Univ. Technol., 2017. [28] S. G. S, A. W. P, I. Suparto, and S. Mariya, “Sintesis, Analisis Korosi dan Toksisitas Pada Material Biokompatibel Co-CrMo,” Maj. Metal. V, vol. 25, pp. 163–168, 2010. [29] J. R. Davis, Surface hardening of steels: understanding the basics. ASM international, 2002. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=eIfcHJtv_kcC&oi=fnd&pg=PP1&dq=davis+2002+surface+hardening&ots=BvachFspgy&sig=XtCcMxi4657rhboD3EJRCfEeFvE&redir_esc=y#v=onepage&q=davis 2002 surface hardening&f=false [30] S. Sumiyanto and A. Abdunnaser, “Pengaruh Proses Carbonitriding Terhadap Material Dasar Bearing Suj2,” Bina Tek., vol. 13, no. 1, p. 29, 2017, doi: 10.54378/bt.v13i1.19. [31] W. Suherman, “Perlakuan Panas,” Diktat Jur. Tek. Mesin Fak. Teknol. lndustri, ITS Surabaya, 1998. [32] D. Satria et al., “Pengaruh Waktu Tahan Proses Pack Carburizing Baja AISI 3115 dengan Menggunakan Calcium Carbonat dan Batubara Sub Bituminous dan Mendapatkan Perlakuan Panas Quenching Media Pendingin Air,” ROTASI, vol. 21, no. 2, pp. 88–95, 2019. [33] R. Suratman, “Panduan Proses Perlakuan Panas,” Bandung Lemb. Penelit. Inst. Teknol. Bandung, 1994. [34] M. I. Nurtaufik, “Pengaruh waktu pack carburizing terhadap tingkat kekerasan dan perubahan strutur micro pada poros dengan bahan baja vcn 150,” Univ. Negeri Semarang, 2020, [Online]. Available: https://lib.unnes.ac.id/42456/ [35] S. R. Elmi Hosseini and Z. Li, “Pack Carburizing: Characteristics, Microstructure, and Modeling,” Encycl. Iron, Steel, Their Alloy., no. April, pp. 1–24, 2016, doi: 10.1081/e-eisa-120051080. [36] F. C. Campbell, Elements of metallurgy and engineering alloys. ASM international, 2008. [Online]. Available: https://books.google.co.id/books?hl=en&lr=&id=6VdROgeQ5M8C&oi=fnd&pg=PR1&dq=element+of+metallurgy&ots=V2ouoc3OeE&sig=h4F90KaMb69i59xSq9_nIwbmwY4&redir_esc=y#v=onepage&q=element of metallurgy&f=false [37] B. Kuswanto, “Pengaruh Perbedaan Ukuran Butir Arang Tempurung Kelapa-Barium Karbonat terhadap Peningkatan Kekerasan Permukaan Material Baja ST 37 dengan Proses Pack Carburizing,” Univ. Diponegoro, 2010. [38] T. Sugeri, G. Permana, and U. Rumendi, “Analisa Uji Keausan Material St 37 Hasil Carburizing dan Hardening Dengan Menggunakan Mesin Uji Keausan Horizontal,” STEMAN, pp. 2–6, 2014. [39] H. Amanto and Daryanto, Ilmu Bahan. Jakarta: PT. Bumi Aksara, 2003. [40] D. N. K. P. Negara and I. D. M. K. Muku, “Pack Carburizing Baja Karbon Rendah,” J. Energi dan Manufaktur, vol. 7, no. 1, pp. 111–230, 2015. [41] K. G. Budinski and M. K. Budinski, Engineering Materials: Properties and Selection. Prentice Hall, 2010. [Online]. Available: https://books.google.co.id/books?id=rK1BPgAACAAJ [42] M. Nurhilal, “Pengaruh Temperatur, Holding Time Proses Pack Carburizing Baja Karbon Terhadap Sifat Fisik Dan Mekanik,” J. Teknol., vol. 10, no. 1, pp. 153–162, 2017. [43] S. Gunawan, “Efek Waktu Tahan Pack Carburizing Terhadap Kekerasan dan Keausan Nosel Imitasi Truk Barang,” J. Penelit. Inov., vol. 1, no. 2, pp. 193–200, Jan. 2022, doi: 10.54082/jupin.44. [44] A. Schonmetz and K. Gruber, Pengetahuan bahan dalam pengerjaan logam: pengerjaan benda-benda setengah jadi pengertian dasar kimia, pengertian dasar fisik. Angkasa, Bandung, 1985. [45] W. D. Callister Jr and D. G. Rethwisch, Characteristics, Application, and Processing of Polymers. 2003. [Online]. Available: https://omnexus.specialchem.com/selection-guide/polypropylene-pp-plastic [46] N. P. Sari, “Nitridasi Pada Paduan Berbasis FeCrNi Sebagai Kandidat Bahan Struktut Reaktor Guna Meningkatkan Ketahanan Korosi Temperatur Tinggi,” Univ. Sebel. Maret, 2011. [47] A. Nurharyanto, “Pengaruh Media Carburizing Arang Sekam Padi dan Arang Tempurung Kelapa Terhadap Nilai Kekerasan Baja Karbon Rendah,” Univ. Sebel. Maret, 2009. [48] Y. Purba, “Pengaruh Variasi Holding Time dan Carburizer Baja Karbon Rendah Proses Pack Carburizing Terhadap Nilai Kekerasan dan Struktur Mikro Untuk Aplikasi Dodos,” Univ. Sultan Ageng Tirtayasa, 2023. [49] T. Narushima, S. Mineta, Y. Kurihara, and K. Ueda, “Precipitates in biomedical Co-Cr alloys,” Jom, vol. 65, no. 4, pp. 489–504, 2013, doi: 10.1007/s11837-013-0567-6. [50] S. Mineta, Alfirano, S. Namba, T. Yoneda, K. Ueda, and T. Narushima, “Precipitates in biomedical Co-28Cr-6Mo-(0-0.41)C alloys heat-treated at 1473 K to 1623 K (1200 C to 1350 C),” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 43, no. 9, pp. 3351–3358, 2012, doi: 10.1007/s11661-012-1142-4. citation: RAMADAYANTI, FITRIA (2024) PENGARUH WAKTU DAN TEMPERATUR PERLAKUAN PERMUKAAN TERHADAP NILAI KEKERASAN PADUAN As-cast CoCrMo UNTUK APLIKASI IMPLAN. S1 thesis, FAKULTAS TEKNIK UNIVERSITAS SULTAN AGENG TIRTAYASA. document_url: https://eprints.untirta.ac.id/43706/1/Fitria%20Ramadayanti_3334170070_Fulltext.pdf document_url: https://eprints.untirta.ac.id/43706/10/Fitria%20Ramadayanti_3334170070_01.pdf document_url: https://eprints.untirta.ac.id/43706/3/Fitria%20Ramadayanti_3334170070_02.pdf document_url: https://eprints.untirta.ac.id/43706/4/Fitria%20Ramadayanti_3334170070_03.pdf document_url: https://eprints.untirta.ac.id/43706/5/Fitria%20Ramadayanti_3334170070_04.pdf document_url: https://eprints.untirta.ac.id/43706/6/Fitria%20Ramadayanti_3334170070_05.pdf document_url: https://eprints.untirta.ac.id/43706/7/Fitria%20Ramadayanti_334170070_Ref.pdf document_url: https://eprints.untirta.ac.id/43706/8/Fitria%20Ramadayanti_3334170070_Lamp.pdf document_url: https://eprints.untirta.ac.id/43706/9/Fitria%20Ramadayanti_3334170070_CP.pdf