ABSTRAK

Permintaan atas pigmen TiO₂ antara tahun 2000 dan 2012 meningkat sekitar 32%, dari 4,1 juta ton sampai 5,4 juta ton (Inc, Cormark Securoities. 2013) sehingga titanium dioksida (TiO₂) merupakan senyawa yang memiliki potensi nilai jual yang tinggi. Secara komersial, industri pembuatan pigmen titanium dioksida (TiO₂), didapatkan dari hasil *leaching* dengan asam klorida karena biaya prosesnya tidak begitu tinggi, namun proses pemisahan TiO₂ dari pasir besi (FeTiO₃) sangat sulit. Proses klorida memerlukan peningkatan kadar atau upgrading ilmenit (35-65% TiO₂) menjadi synthetic rutile (90-95% TiO₂). Upgrading ini bertujuan untuk mendapatkan pigmen TiO2 dengan kemurnian yang tinggi. Ada beberapa proses untuk meningkatkan kadar TiO₂ dari pasir ilmenit (35-65% TiO₂) menjadi synthetic rutile (90-92%), salah satu diantaranya proses Becher. Proses Becher pada penelitian ini diharapkan dapat mempermudah proses pemisahan dengan meningkatkan kadar TiO₂ melalui tahap oksidasi, dan reduksi. Variasi temperatur dan waktu reduksi sangat mempengaruhi peningkatan perolehan kadar TiO2. Penelitian ini bertujuan untuk mengetahui pengaruh temperatur dan waktu reduksi sehingga didapatkan kadar TiO₂ yang tertinggi untuk dilanjutkan ke tahap berikutnya. Penelitian ini menggunakan temperatur dan waktu reduksi masingmasing sebesar 1000, 1100, 1200°C dan 3, 4, 5, 6, 7 jam. Proses oksidasi dilakukan selama 5 jam pada 1000°C. Analisis kimia, XRD, dan mineragrafi dilakukan untuk melihat karakteristik bijih dan hasil kadar TiO₂ setelah melewati proses reduksi. Hasil penelitian menunjukkan bahwa kadar TiO₂ tertinggi sebesar 46,99% pada temperatur 1100°C selama 7 jam. Laju pengendali proses reduksi adalah intermediate controlled.

Kata Kunci: Ilmenit, Rutil, Proses Becher, Persen Reduksi, *Intermediate Controlled*.