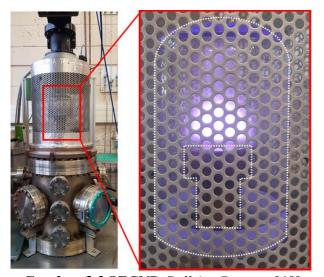

BAB III METODE PENELITIAN

3.1 Diagram Alir

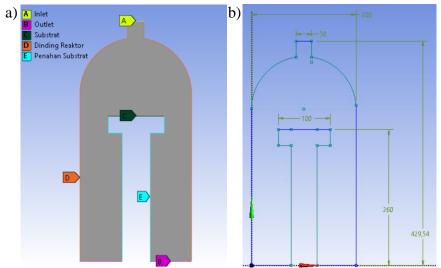
Penelitian ini terdiri dari beberapa langkah yang dapat diringkas dalam bentuk diagram alir seperti pada Gambar 3.1 berikut.



Gambar 3.1 Diagram Alir Penelitian

3.2 Prosedur Percobaan

Prosedur percobaan yang digunakan pada penelitian ini dijabarkan sebagai berikut.


3.2.1 Desain Geometri

Gambar 3.2 PECVD Bell-jar Reactor [40]

Tahapan awal yaitu membuat desain geometri 2D dari *plasma* chamber dengan menggunakan metode fluid flow (fluent) pada ANSYS fluent versi 2023 R2. Setelah dilakukan pembuatan desain 2D *plasma* chamber, kemudian menentukan sisi geometri yang akan menjadi bagian inlet untuk gas prekursor, outlet, dinding reaktor dan dinding substrat.

Setelah itu, proses *meshing* dilakukan untuk membagi geometri menjadi elemen yang dapat digunakan. Desain geometri dan dimensi geometri dari model *plasma chamber* beserta substrat logam diilustrasikan pada Gambar 3.3 dan Tabel 3.4 di bawah ini dengan pemodelan reaktor menyerupai *belljar reactor* seperti pada Gambar 3.2.

Gambar 3.3 Desain 2D *Plasma Chamber* a) Bagian Dalam Reaktor, dan b) Dimensi Geometri

Tabel 3.1 Dimensi Geometri Model *Plasma Chamber*

Spesifikasi	Keterangan
Tinggi Reaktor	429,54 mm
Diameter Reaktor	200 mm
Tinggi Penahan Substrat	260 mm
Diameter Inlet	30 mm
Material Dinding Reaktor	AISI 304 Stainless Steel
Material Substrat	Baja AISI D2
Panjang Substrat	100 mm
Ketebalan Substrat	1 mm

3.2.2 Parameter Simulasi Computational Fluid Dynamics (CFD)

Proses *meshing* yang telah dijalankan dilanjutkan dengan memasukkan parameter dan variabel simulasi seperti jenis gas prekursor,

temperatur pemanasan gas, kecepatan alir gas, dan tekanan seperti yang ditunjukkan pada Tabel 3.2, Tabel 3.3, dan Tabel 3.4. Apabila data parameter telah dimasukkan, maka simulasi CFD dapat dilakukan dengan metode numerik *pressure-based solver* di mana metode ini digunakan karena kecepatan alir gas yang rendah sehingga aliran fluida cenderung menjaga nilai densitas gas agar tetap konstan atau tidak mengalami perubahan yang signifikan. Maksimal iterasi 200 kali dengan penentuannya berdasarkan uji coba awal (*trial and error*) simulasi yang menunjukkan bahwa simulasi telah mencapai konvergen di bawah 200 iterasi, di mana solusi penyelesaian secara komputasi telah mencapai kondisi stabil.

Tabel 3.2 Data Parameter Simulasi CFD

Parameter	Keterangan
Temperatur Pemanasan Gas	400°C dan 450°C
Tekanan Gas	1,2 mbar, 1,4 mbar, 1,6 mbar
Kecepatan Aliran Masuk Gas	5 m/dtk
Jenis Gas Prekursor	C_3H_8 (propana) dan C_2H_2 (asetilena)
Gravitasi	9.8 m/dtk^2
Kondisi Gas	Real Gas (Redlich-Kwong)
Tingkat Mesh	Fine, adaptive mesh
Energy Equation	On
Inisialisasi (initialization)	Hybrid initialization
Iterasi Maksimal	200 kali

Tabel 3.3 Data Parameter Model Gas Propana

Parameter	Nilai
Densitas (real gas)	$4,35 \times 10^3 \text{ kg/m}^3$
Konduktivitas Termal	0.0177 W/m.°C
Kapasitas Panas	1680 J/Kg.°C
Berat Molekul	44,09 g/mol
Temperatur Kritis	96,68°C

Tabel 3.4 Data Parameter Model Gas Asetilena

Sifat	Nilai
Densitas (real gas)	$2,57 \times 10^3 \text{ kg/m}^3$
Konduktivitas Termal	0,024 W/m.°C
Kapasitas Panas	1674 J/Kg°C
Berat Molekul	26,0379 g/mol
Temperatur Kritis	36,2°C

3.2.3 Model Matematika Simulasi

Proses PECVD yang menjadi dasar simulasi CFD ini memerlukan pemodelan dinamika gas, perpindahan panas, perpindahan massa, elektromagnetisme, dan kinetika kimia sehingga pada persamaan (18) dan persamaan (19) berikut mengenai hukum kekekalan massa dan persamaan Navier-Stokes untuk aliran laminar kondisi waktu *steady-state* yang menggambarkan dinamika aliran gas di dalam ruang proses [41].

$$\Delta(\rho V) = 0....(18)$$

$$\nabla(\rho V u_i) = -\frac{\partial \rho}{\partial x_i} + \nabla(\mu \nabla u_i)....(19)$$

di mana ρ adalah densitas, V adalah vektor kecepatan, u_i adalah proyeksi vektor kecepatan pada sumbu i atau sumbu x pada koordinat kartesius, μ adalah viskositas kinetik. Persamaan perpindahan panas dapat dituliskan sebagai

$$\nabla(\rho V h_0) = \nabla(k_{eff} \nabla T) + S_h....(20)$$

di mana h_0 adalah entalpi, k_{eff} adalah konduktivitas termal, T adalah temperatur, S_h adalah sumber panas disebabkan reaksi kimia. Model plasma yang digabungkan secara kapasitif didasarkan pada fungsi persamaan distribusi energi elektron Maxwellian. Keseimbangan elektron tersebut dapat dituliskan sebagai

$$\nabla \Gamma_e = S....(21)$$

di mana Γ_e adalah fluks elektron dan S adalah sumber elektron berdasarkan reaksi kimia. Keseimbangan energi di dalam plasma dapat dituliskan sebagai

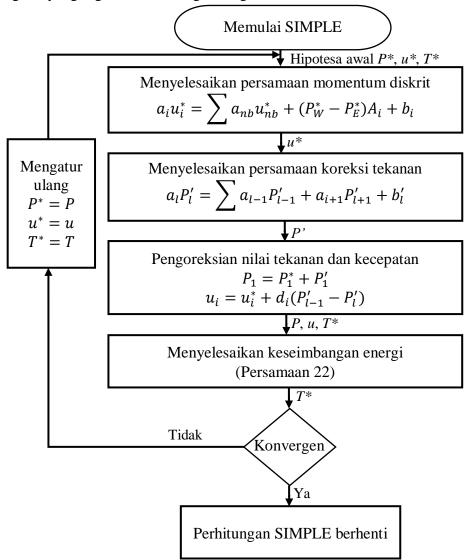
$$\nabla \left(\frac{5}{2}T_e \cdot \Gamma_e - \chi \nabla T_{\varepsilon}\right) = P - P_c....(22)$$

di mana T_e adalah temperatur elektron, χ adalah konstanta termodifusi elektron, P adalah daya yang teradsorpsi dalam plasma, dan P_c adalah besaran energi yang hilang karena reaksi tumbukan elektron. Distribusi spasial potensial elektrostatik dijelaskan dengan persamaan Poisson yang dapat dtuliskan sebagai

$$-\nabla \cdot \varepsilon_r \nabla \varphi = e(\Sigma_i q_i n_i - n_e)...(23)$$

di mana ε_r adalah permitivitas listrik relatif, q_i adalah muatan ion, φ adalah fluks elektrik, n_i adalah densitas ion, e adalah muatan listrik partikel, n_e adalah densitas elektron. Model persamaan perpindahan massa untuk spesies atau partikel pada sumbu i dapat dituliskan sebagai

$$\frac{\partial}{\partial x_j} (\rho u_j Y_i) = \frac{\partial}{\partial x_j} J_{ij} + M_i \omega_i$$
 (24)


di mana u_j adalah proyeksi vektor kecepatan pada sumbu j atau sumbu y pada koordinat kartesius, Y_i adalah fraksi massa spesies atau partikel pada sumbu i, J_{ij} adalah proyeksi vektor fluks difusi pada sumbu j, M_i adalah massa molar spesies atau partikel di sumbu i, dan ω_i adalah besaran laju reaksi.

3.2.4 Pengolahan Data Hasil Simulasi

Simulasi CFD pada ANSYS *Fluent* dikatakan berhasil apabila hasil simulasi telah mencapai konvergen. Hasil simulasi berupa ilustrasi distribusi gas prekursor dan temperatur pada model geometri *plasma chamber*. Dengan literatur sebagai acuannya, hasil simulasi kemudian dianalisis mengenai pengaruh perbedaan temperatur dan jenis gas hidrokarbon yang digunakan terhadap karakteristik aliran gas yang terbatas pada densitas, laju alir gas, dan distribusi tekanan gas proses PECVD pada substrat.

3.3 Algoritma Simulasi CFD

Simulasi CFD ini menggunakan algoritma Semi-Implicit Method for Pressure Linked Equations (SIMPLE) sebagai metode penyelesaian yang tepat untuk simulasi aliran fluida pada model dua dimensi. Algoritma SIMPLE merupakan solusi iteratif atau berulang dari persamaan momentum dan persamaan kontinuitas. Algoritma SIMPLE pada simulasi CFD bekerja dengan beberapa langkah yang digambarkan dengan diagram alir berikut.

Gambar 3.4 Diagram Alir Algoritma SIMPLE Keadaan Tunak (Steady-State)