MICROWAVE AND OPTICAL

Edited By: Wenquan Che

JOURNAL METRICS > Online ISSN: 1098-2760 © Wiley Periodicals, LLC.

About This Journal

Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in RF, Microwave, and Millimeter Waves, Antennas and Propagation, Submillimeter-Wave and Infrared Technology, and Optical Engineering.

Read the journal's full aims and scope.

 $\bullet \bullet \bullet \bullet$

Articles

RESEARCH ARTICLE

Triple-band metasurface absorber for RF energy harvesting applications

Rajan Agrahari, Satyesh Singh, Diptiranjan Samantaray, Bambam Kumar, Somak Bhattacharyya, Manpuran Mahto, Pradip K. Jain

First Published: 29 April 2023

Abstract | Full text | PDF | References | Request permissions

RESEARCH ARTICLE

Design of slot radiating RF planar sensor for homogeneity check of dielectric discontinuity

Apala Banerjee, Mohammad Jaleel Akhtar

First Published: 28 April 2023

Abstract | Full text | PDF | References | Request permissions

RESEARCH ARTICLE

A high-performance microstrip bandpass filtering coupler with low-loss and compact size

Abbas Rezaei, Salah I. Yahya, Leila Nouri

First Published: 28 April 2023

5/1/23, 5:09 PM

JOURNAL

Volume 5, Issue 5 Engineering Reports

May 2023

ISSUE Volume 32, Issue 12 December 2022

ISSUE

Volume 36, Issue 8 25 May 2023

tweets by Wiley's @wileyengineer

About Wiley Online Library

Privacy Policy Terms of Use About Cookies Manage Cookies Accessibility Wiley Research DE&I Statement and Publishing Policies Developing World Access

Help & Support

Contact Us Training and Support DMCA & Reporting Piracy

Opportunities

Subscription Agents Advertisers & Corporate Partners

Connect with Wiley

The Wiley Network Wiley Press Room

MICROWAVE AND OPTICAL

Overview

Aims and Scope

Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas:

- RF, Microwave, and Millimeter Waves
- Antennas and Propagation
- Submillimeter-Wave and Infrared Technology
- Optical Engineering

All papers are subject to peer review before publication.

Readership

Engineers, scientists, professors, students, government agents, practitioners and technicians involved in microwave and optical technology

Keywords

microwaves, optics, RF (radio frequency), communications, fiber optics, laser, circuits, antennas, electromagnetics, semiconductor devices, high frequency, high speed, radar, journal, online journal, Wiley Online Library

Abstracting and Indexing Information

- Academic Search (EBSCO Publishing)
- Academic Search Alumni Edition (EBSCO Publishing)
- Advanced Technologies & Aerospace Database (ProQuest)
- COMPENDEX (Elsevier)
- Current Contents: Engineering, Computing & Technology (Clarivate Analytics)
- INSPEC (IET)
- Journal Citation Reports/Science Edition (Clarivate Analytics)
- Materials Science & Engineering Database (ProQuest)
- Science Citation Index Expanded (Clarivate Analytics)
- SciTech Premium Collection (ProQuest)
- SCOPUS (Elsevier)
- Technology Collection (ProQuest)
- VINITI (All-Russian Institute of Science & Technological Information)
- Web of Science (Clarivate Analytics)

Sign up for email alerts

Enter your email to receive alerts when new articles and issues are published.

Email address*

Enter email

Continue

Tools

IL MICROWAVE AND OPTICAL

Editorial Board

EDITOR

Wenquan Che (South China University of Technology, China)

AREA EDITORS

- Kai Kang (University of Electronic Science and Technology of China, China) Yufei Ma (Harbin Institute of Technology, China) **Giuseppina Monti** (University of Salento, Italy) Mohammad Sharawi (University of Montréal, Canada) Jian Wang (Huazhong University of Science and Technology, China) Yang Yang (University of Technology Sydney, Australia) ASSOCIATE EDITORS Mahmoud A. Abdelrahman Abdalla (Military Technical College, Egypt) Zuo Chao (Nanjing University of Sciences & Technology, China) Raghvendra Chaudhary (Indian Institute of Technology, India) Shichang Chen (Hangzhou Dianzi University, China) Zhijiao Chen (Beijing University of Posts and Telecommunications, China) **Francesco Chiadini** (University of Salerno, Italy) **Kuo-Sheng Chin** (Chang Gung University, Taiwan) Asmita Dani (Reach Labs, USA) Muhammad Ikram (University of Queensland, Australia) Muhammad Imran (Sant'Anna School of Advanced Studies - Pisa, Italy) **Hsuan-Ling Kao** (Chang Gung University, Taiwan) Muhammad Faeyz Karim (Nanyang Technological University, Singapore) **Gul Zameen Khan** (NLT Digital Solutions, Australia) Fushan Li (Fuzhou University, China) Yue Li (Tsinghua University, China) Shaowei Liao (South China University of Technology, China) Mohammed Gulam Nabi Alsath (Sri Sivasubramaniya Nadar College of Engineering, India) Jungsuek Oh (Seoul National University, South Korea) Habiba Ouslimani (Paris Nanterre University, France) Qiang Ren (Beihang University, China) **Luciano Tarricone** (University of Salento, Italy) Youssef Tawk (American University of Beirut, Lebanon) Rahat Ullah (Nanjing University of Information Science and Technology, China) Masood Ur Rehman (University of Glasgow, UK) Qiye Wen (University of Electronic Science and Technology of China) Yungiu Wu (University of Electronic Science and Technology of China) Wanchen Yang (South China University of Technology) Chenxi Zhao (University of Electronic Science and Technology of China) Shaoyong Zheng (Sun Yat-sen University Guangzhou, China) EDITORIAL BOARD Maurizio Bozzi (Pavia University, Italy) Tie Jun Cui (Southeast University, China) Selection Selection (Federal University of Rio Grande do Sul, Brazil) Alvaro de Salle (Federal University of Rio Grande do Sul, Brazil) **V.F. Fusco** (Queen's University Belfast, Ireland) 🚟 Rifaqat Hussain (King Fahd University of Petroleum and Minerals, Saudi Arabia) Jeong Lee (Hongik University, South Korea)
- Marian Marciniak (National Institute of Technology, Poland)
- Andrea Massa (Univeristy of Trento, Italy)

🔀 Sign up for email alerts

Enter your email to receive alerts when new articles and issues are published.

	Email address*	
	Enter email	
		Continue
Tools		
2	Submit an Article	
8	Browse free sample issue	

Subscribe to this journal

More from this journal

0

- Resources for Authors
- Wiley Job Network

D | V E R S | T Y in Research Jobs

Please contact us to see your job listed here

Cloud Identity Consultant - Directory Services

Bangalore, India Competitive

HENKEL IS FOR THOSE WHO STEP UP. DO YOU? At Henkel, you can make a difference and craft your career. That's why you own your projects and take full...

Employer: Henkel

Synthesis Chemist - Manufacturing Warrington, PA

Ott Scientific The Ott Scientific family of companies comprises Polysciences, Bangs Laboratories, and Ethos Biosciences.

Related Titles

Henke

Apply for this job

JOURNAL

Volume 5, Issue 5 Engineering Reports

May 2023

ISSUE Volume 32, Issue 12 December 2022

ISSUE Volume 36, Issue 8 25 May 2023

About Wiley Online Library

Microwave and Optical Technology Letters

Privacy Policy Terms of Use About Cookies Manage Cookies Accessibility Wiley Research DE&I Statement and Publishing Policies Developing World Access Help & Support

> Contact Us Training and Support DMCA & Reporting Piracy

> > Opportunities

Subscription Agents Advertisers & Corporate Partners

Connect with Wiley

The Wiley Network Wiley Press Room

Copyright © 1999-2023 John Wiley & Sons, Inc. All rights reserved

WILEY

- [10] Luo Y, Chu QX, Zhu L. A miniaturized wide-beanwidth circularly-polarized planar antenna via two pairs of parallel dipoles in a square contour. *IEEE Trans Antennas Propagat.* 2015;63: 3753–3759.
- [11] Liu N-W, Zhu L, Choi W-W. A low-profile wide-beamwidth circularly-polarized patch antenna on a suspended substrate. *IET Microw Antennas Propagat.* 2016;10:885–890.
- [12] Baik J-W, Lee K-J, Yoon W-S, Lee T-H, Kim Y-S. Circularly polarized printed crossed dipole antennas with broadband axial ratio. *Electron Lett.* 2008;44:785–786.

How to cite this article: Zheng D-Z, Luo Y, Chu Q-X. Axial-ratio beamwidth and gain enhanced circularly polarized antenna using parasitic elements. *Microw Opt Technol Lett.* 2017;59:2922–2929. <u>https://doi.org/10.1002/mop.30851</u>

Received: 15 April 2017

DOI: 10.1002/mop.30848

Dual-wideband band pass filter using folded cross-stub stepped impedance resonator

Teguh Firmansyah¹ 💿 🛛

Supriyanto Praptodinoyo¹

Romi Wirvadinata¹

Suhendar Suhendar¹

Siswo Wardoyo¹

Alimuddin Alimuddin¹

Cindy Chairunissa²

Mudrik Alaydrus³ | Gunawan Wibisono⁴

¹Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Cilegon, Banten 42435, Indonesia

² School of Engineering, Electronics, University of Edinburgh, Edinburgh EH9 3JN, United Kingdom

³Department of Electrical Engineering, Universitas Mercu Buana, Meruya, Jakarta 11650, Indonesia

⁴Department of Electrical Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia

Correspondence

Teguh Firmansyah, Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Cilegon, Banten 42435, Indonesia. Email: teguhfirmansyah@untirta.ac.id

Abstract

In this letter, a dual-wideband band pass filter (DW-BPF) using cross-stub stepped impedance resonator (CS-SIR) was simulated, fabricated, and measured accordingly. The CS-SIR was used to replace the conventional halfwavelength open stub resonators. Compare to the conventional resonator, the CS-SIR resonator has a wider fractional bandwidth and ease of fabrication. Furthermore, the DB-BPF was fabricated on microstrip with $\varepsilon_r = 4.4$, h = 0.8 mm, and tan $\delta = 0.0265$. The DW-BPF with CS-SIR achieves transmission-coefficients/fractional-bandwidth of 0.22 dB/94.19% and 1.87 dB/33.52% at 1.14 GHz and 2.31 GHz, respectively. In order to reduce the filter size, a folded CS-SIR (FCS-SIR) was also proposed. As a result, this BPF size was reduced to 53%, with the BPF size of 0.30 λ_G^2 and 0.14 λ_G^2 for DW-BPF with CS-SIR and DW-BPF with folded CS-SIR, respectively. The λ_G is the wavelength at the first frequency. Further, the DW-BPF with FCS-SIR achieves transmission coefficients/fractional bandwidth of 0.19 dB/89.08% and 1.29 dB/31.90% at 1.21 GHz and 2.41 GHz, respectively. Measured results are in a very good agreement with the simulated results.

KEYWORDS

dual-wideband band pass filter, stepped impedance resonator, transmission zero

1 | **INTRODUCTION**

A dual-band band pass filter (DB-BPF) is an important component of a radio transceiver for reducing interference and noise at two frequency bands simultaneously.¹ Therefore, the pursuit of a DB-BPF with good-performances has become a key trend in the field of research. A variety of design

FIGURE 1 The conventional half-wavelength open stub resonator replaced by stub-stepped impedance resonator

2930

FIGURE 2 The relationship between impedance ratio (K_1, K_2) and electrical length (θ)

techniques is frequently used for DB-BPF design such as square loop dual mode resonator,² defected ground structure (DGS),^{3,4} spiral resonators,⁵ defected stepped impedance resonator (Defected-SIR),^{6,7} slotted stepped impedance resonator (Slotted-SIR),⁸ multilayer stepped impedance resonator (Multilayer-SIR),^{9,10} meandering stepped impedance resonators (Meandering-SIR),¹¹ stub-loaded stepped impedance resonator (Stub-loaded SIR),¹² and coupled stepped impedance resonator (Coupled-SIR).¹³ However, the DB-BPFs proposed by^{1–13} still possess a complex geometry and achieve a narrow bandwidth.

FIGURE 3 The layout and photograph of the design DW-BPF using CS-SIR

FIGURE 4 (A) The dependency of the center frequency and fractional bandwidth on the impedance ratio (W_1/W_2) . (b) The stability of the center frequency and fractional bandwidth on the impedance ratio (W_3/W_2)

As a novelty in this letter, we propose a dual-wideband band pass filter (DW-BPF) using cross-stub stepped impedance resonator (CS-SIR). Figure 1 shows a CS-SIR which was used to replace the conventional half-wavelength open stub resonators. A folded CS-SIR (FCS-SIR) was also proposed to reduce the filter size. Thus, the BPF size is reduced to 53%. The proposed design could be validated by simulations and measurements. This letter is organized as follows: Section 2 briefly describes the design of the proposed DW-BPF using CS-SIR, Section 3 presents the simulated and experimental results, and finally, Section 4 concludes this research.

2 | PROPOSED DUAL-WIDEBAND BAND PASS FILTER

A half-wavelength open stub resonator structure was commonly used to design the conventional single-band

FIGURE 5 (A) Transmission coefficients (S_{21}) and reflection coefficients (S_{11}) response with varied W_1 and L_1 . (B) Transmission coefficients (S_{21}) and reflection coefficients (S_{11}) response with varied W_3 and L_3

microstrip BPF.¹ In this letter, the half-wavelength open stub resonator is converted to the stub stepped impedance resonator as shown in Figure 1. The CS-SIR structure consists of three transmission lines having different characteristic impedances Z_N (N = 1,2,3) with corresponding electrical lengths θ_N (N = 1,2,3), respectively. Analyzing the input impedance $Z_{IN(SIR)}$ of the stepped impedance resonator section, the following equations can be derived:

$$Z_{\rm IN(1)} = -jZ_1 \cot \theta_1 \tag{1}$$

$$Z_{\rm IN(2)} = Z_2 \frac{Z_{\rm IN(1)} + j Z_2 \tan \theta_2}{Z_2 + j Z_{\rm IN(1)} \tan \theta_2}$$
(2)

$$Z_{\rm IN(SIR)} = Z_{\rm IN(3)} = Z_3 \frac{Z_{\rm IN(2)} + jZ_3 \tan \theta_3}{Z_3 + jZ_{\rm IN(2)} \tan \theta_3}$$
(3)

Equation (3) can also be expressed as:

FIGURE 6 The layout and photograph of the design DW-BPF using folded CS-SIR (FCS-SIR)

$$Z_{\text{IN(SIR)}} = Z_1 \frac{Z_2(-jZ_3\cot\theta_3 + jZ_2\tan\theta_2) + jZ_1\tan\theta_1(Z_2 + Z_3\cot\theta_3\tan\theta_2)}{Z_1Z_2 + Z_1Z_3\cot\theta_3\tan\theta_2 + Z_2Z_3\cot\theta_3\tan\theta_1 - Z_2^2\tan\theta_2\tan\theta_1}$$
(4)

The resonant frequencies can be extracted from admittance condition $Y_{\text{IN(SIR)}} = 0$ or impedance condition $Z_{\text{IN(SIR)}} = \infty$.¹ This can be obtained when:

$$Z_2^2 \tan \theta_3 \tan \theta_1 \tan \theta_2 - Z_1 Z_2 \tan \theta_3 - Z_1 Z_3 \tan \theta_2 - Z_2 Z_3 \tan \theta_1 = 0$$
(5)

with the Z_N (N = 1,2,3) and θ_N (N = 1,2,3) stand for the characteristic impedance and electrical length, respectively. For the same electrical length $\theta_1 = \theta_2 = \theta_3 = \theta$, the resonance condition can also be shortened as follows:

FIGURE 7 The surface current of the DW-BPF with CS-SIR and FCS-SIR. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 (A) Comparison between simulated and measured results of DW-BPF using CS-SIR. (B) Comparison between simulated and measured results of DW-BPF using FCS-SIR. [Color figure can be viewed at wileyonlinelibrary.com]

$$\tan^{3}\theta - K_{1}\tan\theta - K_{1}K_{2}\tan\theta - K_{2}\tan\theta = 0$$
(6)

which can also be expressed as:

$$\tan\theta \ \left(\tan\theta + \sqrt{K_1 + K_1 K_2 + K_1}\right) \left(\tan\theta \ - \sqrt{K_1 + K_1 K_2 + K_1}\right) = 0$$
(7)

where the impedance ratio $K_{\rm N}$ (1,2) is defined by:

$$K_1 = \frac{Z_1}{Z_2}, \text{ and} \tag{8}$$

$$K_2 = \frac{Z_3}{Z_2} \tag{9}$$

respectively. Equation (4) shows that the resonator provides two resonating frequencies. Therefore, the resonator serves as a dual mode resonator to produce two resonant frequencies. The relationship of K_1 , K_2 , and θ is shown in Figure 2.

3 | **RESULTS AND DISCUSSION**

Figure 3 shows the schematic of the design DW-BPF using CS-SIR. The DW-BPF was fabricated on microstrip with $\varepsilon_r = 4.4$, h = 0.8 mm, and tan $\delta = 0.0265$. The DW-BPF consists of input/output port (*I/O*) line and two stub-SIR placed in a crossed manner. The DW-BPF was simulated using advanced design system (ADS) software, whereby an RS-ZVA vector network analyzer (VNA) was used to test the fabricated prototype of DW-BPF. The dimensions are given as follows (all in millimeters): $L_1 = 32$, $L_2 = 35$,

FIGURE 9 (A) Comparison of transmission coefficients (S_{21}) between DW-BPF using CS-SIR and DW-BPF using FCS-SIR. (B) Comparison of group delays (GDs). [Color figure can be viewed at wileyonlinelibrary.com]

Ref.	Method	Center frequency (GHz)	Transmission coefficients (dB)	-3 dB FBW (%)
[2]	Square loop dual mode resonator	3.45/6.65	0.70/1.20	14.49/8.27
[3]	Defected ground structure (DGS)	4.60/7.30	0.34/0.35	3.87/2.12
[4]	Defected ground spiral resonator	1.87/2.43	2.00/2.00	4.50/3.30
[5]	Four spiral resonators	1.80/2.40	1.6/2.5	5.60/3.00
[6]	Defected stepped impedance resonator (Defected-SIR)	2.35/3.15	0.50/1.5	3.90/2.80
[7]	Defected stepped impedance resonator (Defected-SIR)	1.85/2.35	0.50/1.00	5.50/4.50
[8]	Slotted stepped impedance resonator (Slotted-SIR)	2.40/3.50	1.80/2.9	4.10/1.40
[9]	Multilayer stepped impedance resonator (Multilayer-SIR)	2.45/5.80	1.35/0.98	3.06/2.16
[10]	Multilayer stepped impedance resonator (Multilayer-SIR)	2.40/5.20	1.20/1.50	5.40/7.30
[11]	Meandering stepped impedance resonators (Meandering-SIR)	2.40/5.25	0.72/2.10	8.33/3.85
[12]	Stub-loaded stepped impedance resonator (Stub-loaded SIR)	2.40/5.20	1.20/2.00	8.00/5.00
[13]	Coupled stepped impedance resonator (Coupled-SIR)	2.4/3.8	0.50/1.00	8.33/5.26
This Work	Cross-stub stepped impedance resonator (CS-SIR)	1.14/2.31	0.22/1.87	94.19/33.52
	Folded cross-stub stepped impedance resonator (FCS-SIR)	1.21/2.41	0.19/1.29	89.08/31.90

TABLE 1 Summary of the proposed dual-wideband BPF comparison

 $L_3 = 9.0, L_4 = 23, L_5 = 21, W_1 = 2.5, W_2 = 1.5, W_3 = 5.0, W_4 = 10, and W_5 = 7.0.$

The dependency of the center frequency and fractional bandwidth on the impedance ratio (W_1/W_2) is given in Figure 4A. The figure shows that by increasing the impedance ratio (W_1/W_2) , the center frequencies will be stable. However, increasing impedance ratio (W_1/W_2) would raise the fractional bandwidth. Figure 4B also shows the stability of the center frequency and fractional bandwidth on the variance of impedance ratio (W_3/W_2) . The chart shows that both center frequency and fractional bandwidth were not changed significantly. Figure 5A and B shows transmission coefficients (S_{21}) and reflection coefficients (S_{11}) in response to varied W_1, W_3, L_1 , and L_3 .

In order to reduce the filter size, a folded CS-SIR (FCS-SIR) was proposed as shown in Figure 6. The dimensions are given as follows (all in millimeters): $L_1 = 32$, $L_{2a} = 5$, $L_{2b} = 5$, $L_{2c} = 20$, $L_d = 5$, $L_3 = 9.0$, $L_4 = 23$, $L_5 = 21$,

 $W_1 = 2.5$, $W_{2a} = W_{2b} = W_{2c} = W_{2d} = 1.5$, $W_3 = 5.0$, $W_4 = 10$, and $W_5 = 7.0$. As a result, this BPF size was reduced to 53%. Furthermore, both DW-BPF using CS-SIR and folded CS-SIR (FCS-SIR) were accomplished with two pass bands. Figure 7 shows the surface current at filter with CS-SIR and FCS-SIR. It shows that the first center frequency will obtain maximum value of surface current at transmission line 2 (W_2 , L_2) and the second center frequency will obtain maximum value of surface current at transmission line 1 (W_1 , L_1) and transmission line 3 (W_3 , L_3).

Figure 8A shows a comparison between simulated and measured of DW-BPF using CS-SIR. A DW-BPF with CS-SIR achieves transmission-coefficients/fractional-bandwidth of 0.22 dB/94.19% and 1.87 dB/33.52% at 1.14 GHz and 2.31 GHz, respectively. The transmission zeros (TZ) of this filter are -28.29 dB, -21.36 dB, and -18.02 at 0.53 GHz, 1.79 GHz, and 2.86 GHz, respectively. Furthermore, Figure 8B shows a comparison between simulated and measured of

²⁹³⁴ WILEY

DW-BPF using FCS-SIR. A DW-BPF with FCS-SIR achieves transmission coefficients/fractional bandwidth of 0.19 dB/ 89.08% and 1.29 dB/31.90% at 1.21 GHz and 2.41 GHz, respectively. The transmission zeros (TZ) of this filter are -27.94 dB, -21.25 dB, and -23.25 at 0.59 GHz, 1.90 GHz, and 3.04 GHz, respectively. Figure 9A shows a comparison of transmission coefficients (S_{21}) between DW-BPF using CS-SIR and DW-BPF using FCS-SIR. The measured group delays (GDs) of all pass bands below 5 ns are also depicted in Figure 9B. Table 1 summarizes the comparison of the proposed dual band BPF. Finally, the measured results are in a very good agreement with the simulated results.

4 | CONCLUSION

This letter proposes a dual-wideband band pass filter (DW-BPF) using cross-stub stepped impedance resonator (CS-SIR). The CS-SIR was used to replace the conventional half-wavelength open stub resonators. In order to reduce the filter size, a folded CS-SIR (FCS-SIR) also was proposed. As a result, this BPF size is reduced to 53%. Measured results are in a very good agreement with the simulated results. In comparison with the previous works, both of BPF using CS-SIR and BPF using FCS-SIR could produce wider bandwidth, good transmission coefficients, and ease of fabrication.

ACKNOWLEDGMENTS

The work for this grant was supported by the Ministry of Research, Technology and Higher Education, Indonesian Government in Penelitian Kerjasama Perguruan Tinggi (Grand No. 267/UN43.9/PL/K/2016).

REFERENCES

- Alkanhal MAS. Dual-band bandpass filters using inverted stepped-impedance resonators. J Electromagn Waves Appl. 2009;23:1211–1220.
- [2] Atallah B, Jan M, And AB. Dual-band bandpass filter by using square-loop dual-mode resonator. *Microwave Opt Technol Lett.* 2008;50:1567–1570.
- [3] Shervin A, Mahboubeh K. Improvement the design of microwave dual-band BPF by DGS technique. *Microw Opt Technol Lett.* 2016;58:2133–2137.
- [4] Mi X, Guoliang S, Fang X. Compact dual-band bandpass filters based on a novel defected ground spiral resonator. *Microw Opt Technol Lett.* 2016;58:1636–1640.
- [5] Hung C-Y, Yang R-Y, Lin Y-L. A simple method to design a compact and high performance dual-band bandpass filter for GSM and WLAN. *Prog Electromagn Res C*. 2010;13:187–193.
- [6] Bian W, Chang-Hong Liang L, Qi L, Pei-Yuan Q. Novel dualband filter incorporating defected SIR and microstrip SIR. *IEEE Microw Wireless Comp Lett.* 2008;18:393–394.

- [7] Bian W, Chang-Hong Liang L, Pei-Yuan Q, Qi L. Compact dual-band filter using defected stepped impedance resonator. *IEEE Microw Wireless Comp Lett.* 2008;18:674–676.
- [8] Lan S, Xuehui G, Xiaoyan Z. Compact dual-mode dual-band bandpass filter using slotted stepped-impedance resonator. *Microw Opt Technol Lett.* 2016;58:1056–1060.
- [9] Djaiz A, Nedil M, Habib AM, Denidni TA. Compact multilayer dual-band filter using slot coupled stepped-impedance-resonators structure. *Microw Opt Technol Lett.* 2009;51:1635–1638.
- [10] Min-Hang Weng W, Ru-Yuan Y, Yu-Chi Chang C, Hung-Wei Wu W, Kevin S. Design of a multilayered dualband bandpass filter with transmission zeros. *Microw Opt Technol Lett.* 2008; 50:2010–2013.
- [11] Fu-Chang C, Qing-Xin C. Filter using meandering stepped impedance resonators. *Microw Opt Technol Lett.* 2008;50:2619–2612.
- [12] Mingqi Z, Xiaohong T, Fei X. Compact dual band transversal bandpass filter with multiple transmission zeros and controllable bandwidths. *IEEE Microwave Wireless Comp Lett.* 2009;19:347–349.
- [13] Changsoon K, Tae Hyeon L, Bhanu S, Kwang Chul S. Miniaturized dual-band bandpass filter based on stepped impedance resonators. *Microw Opt Technol Lett.* 2017;59:1116–1119.

How to cite this article: Firmansyah T, Praptodinoyo S, Wiryadinata R, et al. Dual-wideband band pass filter using folded cross-stub stepped impedance resonator. *Microw Opt Technol Lett.* 2017;59:2929–2934. <u>https://</u>doi.org/10.1002/mop.30848

Lampiran Tambahan :

Print screen : Jurnal Microwave and Optical Technology Letters terindex Web of Science dengan Impact Factor 1.311

Print screen : List jurnal sudah di scopus-author

Print screen : SCIMAGO dan Quartil nya Journal Citation Reports Journals Categories Publishers Countries/Regions ♡ My favorites Sign Ir Search results > Journal profile 💙 Favorite 🛓 Export JCR YEAR 2021 Journal information **MICROWAVE AND OPTICAL** Science Citation Index Expanded (SCIE) CATEGORY **TECHNOLOGY OPTICS - SCIE** ENGINEERING, ELECTRICAL & ELECTRONIC **LETTERS** SCIE 0895-2477 English USA 1997 **Publisher information** 1098-2760 JCR ABBREVIATION 111 RIVER ST, HOBOKEN WILEY 12 issues/year MICROW OPT TECHN LET 07030-5774, NJ

Journal's performance

Journal Impact Factor

Microw. Opt. Technol. Lett.

The Journal Impact Factor (JIF) is a journal-level metric calculated from data indexed in the Web of Science Core Collection. It should be used with careful attention to the many factors that influence citation rates, such as the volume of publication and citations characteristics of the subject area and type of journal. The Journal Impact Factor can complement expert opinion and informed peer review. In the case of academic evaluation for tenure, it is inappropriate to use a journal-level metric as a proxy measure for individual researchers, institutions, or articles. Learn more

The Journal Citation Indicator (JCI) is the average Category Normalized Citation Impact (CNCI) of citable items (articles &

have 50% more citation impact than the average in that category. It may be used alongside other metrics to help you

reviews) published by a journal over a recent three year period. The average JCI in a category is 1. Journals with a JCI of 1.5

Journal Impact Factor contributing items		
Citable items (1,218)	Citing Sources (314)	
TITLE	CITATION COUNT	
Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection	27	~
Tunable, reconfigurable, and programmable metamaterials	16	~
High energyLiDARsource for long distance, high resolution range imaging	15	~
Ultrawideband elliptical microstrip antenna for terahertz applications	15	~
High-isolation conjoined loop multi-input multi-output antennas for the fifth- generation tablet device	13	~
Dual band transparent antenna for wireless MIMO system applications	12	~
Stub loaded, low profile UWB antenna with independently controllable notch-bands	12	v
Wideband circular cavity-backed slot antenna with conical radiation patterns	11	~
A new class of wideband microstrip falcate patch antennas with reconfigurable capability at circular-polarization	10	~
Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications	10	~

View All in Web of Science

Journal Citation Indicator (JCI)

0.38

evaluate journals. Learn more

Total Citations

6.957

The total number of times that a journal has been cited by all journals included in the database in the JCR year. Citations to journals listed in JCR are compiled annually from the JCR years combined database, regardless of which JCR edition lists the journal.

Citation distribution

The Citation Distribution shows the frequency with which items published in the year or two years prior were cited in the JCR data year (i.e., the component of the calculation of the JIF). The graph has similar functionality as the JIF Trend graph, including hover-over data descriptions for each data point, and an interactive legend where each data element's legend can be used as a toggle. You can view Articles, Reviews, or Non-Citable (other) items to the JIF numerator. Learn more

Open Access (OA)

🛓 Export

0.91%

93.00%

The data included in this tile summarizes the items published in the journal in the JCR data year and in the previous two years. For example, in the 2020 JCR data, released in June 2021, the Open Access (OA) data show the publication model (Gold OA or subscription) of materials published in 2018, 2019 and 2020, and citations in 2020 to these items. This three-year set of published items is used to provide descriptive analysis of the content and community of the journal. Learn more

Rank by Journal Impact Factor

Journals within a category are sorted in descending order by Journal Impact Factor (JIF) resulting in the Category Ranking below. A separate rank is shown for each category in which the journal is listed in JCR. Data for the most recent year is presented at the top of the list, with other years shown in reverse chronological order. Learn more

Science Citation Index Expanded (SCIE)					EDITION Science Citation Index Expanded (SCIE)				
CATEGORY ENGINEERING, ELECTRICAL & ELECTRONIC 228/276				OPTICS 82/101					
JCR YEAR	JIF RANK	JIF QUARTILE	JIF PERCENTILE		JCR YEAR	JIF RANK	JIF QUARTILE	JIF PERCENTILE	
2021	228/276	Q4	17.57		2021	82/101	Q4	19.31	-
2020	211/273	Q4	22.89		2020	77/99	Q4	22.73	
2019	220/266	Q4	17.48		2019	80/97	Q4	18.04	
2018	219/266	Q4	17.86		2018	79/95	Q4	17.37	
2017	204/260	Q4	21.73		2017	76/94	Q4	19.68	

Rank by Journal Citation Indicator (JCI) ⁽¹⁾

Journals within a category are sorted in descending order by Journal Citation Indicator (JCI) resulting in the Category Ranking below. A separate rank is shown for each category in which the journal is listed in JCR. Data for the most recent year is presented at the top of the list, with other years shown in reverse chronological order. Learn more

ENGINEERING, ELECTRICAL & ELECTRONIC 244/344					OPTICS 82/118				
JCR YEAR	JCI RANK	JCI QUARTILE	JCI PERCENTILE		JCR YEAR	JCI RANK	JCI QUARTILE	JCI PERCENTILE	
2021	244/344	Q3	29.22		2021	82/118	Q3	30.93	
2020	215/319	Q3	32.76		2020	78/115	Q3	32.61	
2019	221/318	Q3	30.66		2019	81/114	Q3	29.39	
2018	213/312	Q3	31.89		2018	78/108	Q3	28.24	
2017	216/306	Q3	29.58		2017	79/106	Q3	25.94	

Citation network

Cited Half-life

6.0 years

The Cited Half-Life is the median age of the items in this journal that were cited in the JCR year. Half of a journal's cited items were published more recently than the cited half-life.

total NUMBER OF CITES 6,957 NOK SELF-CITATIONS 6,436 SELF-CITATIONS 521 Cited Half-life Data

Citing Half-life

5.9 years

The Citing Half-Life is the median age of items in other publications cited by this journal in the JCR year.

TOTAL NUMBER OF CITES

8,125

7,604

SELF-CITATIONS

521

Citing Half-life Data

± Export

# OF CITING SOURCES	CUMULATIVE %	# OF CITES FROM 2021	CITED YEAR
694 sources	100.00%	6,957 citations	All years
40 sources	2.31%	161 citations	2021
230 sources	16.08%	958 citations	2020
195 sources	25.27%	639 citations	2019
162 sources	34.24%	624 citations	2018
159 sources	42.62%	583 citations	2017
160 sources	50.08%	519 citations	2016
156 sources	57.35%	506 citations	2015
128 sources	61.74%	305 citations	2014
103 sources	65.47%	260 citations	2013
99 sources	68.41%	204 citations	2012
		2,198 citations	Older

Citations used to calculate the Impact Factor

Journal Citation Relationships

Content metrics

Source data

This tile shows the breakdown of document types published by the journal. Citable Items are Articles and Reviews. For the purposes of calculating JIF, a JCR year considers the publications of that journal in the two prior years. Learn more

361 total citable items

	ARTICLES	REVIEWS	COMBINED(C)	OTHER DOCUMENT TYPES(0)	PERCENTAGE
NUMBER IN JCR YEAR 2021 (A)	347	14	361	1	100%
NUMBER OF REFERENCES (B)	7,006	1,119	8,125	0	100%
RATIO (B/A)	20.2	79.9	22.5	0.0	

Average JIF Percentile

± Export

± Export

ŧ

The Average Journal Impact Factor Percentile takes the sum of the JIF Percentile rank for each category under consideration, then calculates the average of those values. Learn more

ALL CATEGORIES AVERAGE	EDITION Science Citation Index Expanded
	engineering, electrical & electronic 17.57
	OPTICS 19.31

Contributions by organizations

Organizations that have contributed the most papers to the journal in the most recent three-year period. Learn mo

RANK	ORGANIZATION	COUNT	
1	UNIVERSITY OF ELECTRONIC SCIENCE & TECHNOLOGY OF CHINA	77	
2	XIDIAN UNIVERSITY	75	
3	INDIAN INSTITUTE OF TECHNOLOGY SYSTEM (IIT SYSTEM)	56	
4	SOUTHEAST UNIVERSITY - CHINA	44	
5	CHINESE ACADEMY OF SCIENCES	43	
6	NATIONAL INSTITUTE OF TECHNOLOGY (NIT SYSTEM)	39	
7	SOUTH CHINA UNIVERSITY OF TECHNOLOGY	36	
8	BEIJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS	26	
-	NANJING UNIVERSITY OF POSTS & TELECOMMUNICATIONS	26	
-	TIANJIN UNIVERSITY	26	

Contributions by country/region

Countries or Regions that have contributed the most papers to the journal in the most recent three-year period. Learn more

RANK	COUNTRY / REGION	COUNT	
1	CHINA MAINLAND	707	
2	India	246	
3	South Korea	174	-
4	USA	82	-
5	Iran	59	-
6	Taiwan	55	-
7	Turkey	53	-
8	Malaysia	43	• • • • • • • • • • •
9	Pakistan	36	• • • • • • • • • • • • • • • • • • •
10	Canada	34	• • • • • • • • • • • • • • • • • • •

Additional metrics

Eigenfactor Score

0.00533

The Eigenfactor Score is a reflection of the density of the network of citations around the journal using 5 years of cited content as cited by the Current Year. It considers both the number of citations and the source of those citations, so that highly cited sources will influence the network more than less cited sources. The Eigenfactor calculation does not include journal self-citations. Learn mo

Normalized Eigenfactor

1.14627

ŧ

The Normalized Eigenfactor Score is the Eigenfactor score normalized, by rescaling the total number of journals in the JCR each year, so that the average journal has a score of 1. Journals can then be compared and influence measured by their score relative to 1. Learn more

Article influence score

0.177

ŧ

The Article Influence Score normalizes the Eigenfactor Score according to the cumulative size of the cited journal across the prior five years. The mean Article Influence Score for each article is 1.00. A score greater than 1.00 indicates that each article in the journal has above-average influence. Learn more

.0 **Scopus** Q Search Sources SciVal *⊲* ? 口 盒 This author profile is generated by Scopus. Learn more Firmansyah, Teguh 🛈 Universitas Sultan Ageng Tirtayasa, Serang, Indonesia 🛛 🐵 54971241500 🕦 🗐 https://orcid.org/0000-0002-9000-9337 View more 273 54 10 Citations by 218 documents Documents h-index View h-graph 🔲 Save to list 🤌 Edit profile \cdots More 💭 Set alert Document & citation trends Most contributed Topics 2017–2021 () 10 56 Stepped Impedance Resonator; Bandpass Filters; Compact nents 10 documents Citati Multiple-Input Multiple-Output (MIMO); Antenna; Antenna Arrays Docu 3 documents 0 0 Radio over Fiber; Sidebands; Optics 2023 2011 Documents Citations 2 documents Analyze author output Citation overview View all Topics 🗘 Set alert Firmansyah, Teguh Save to list ••• More 54 documents Export all Save all to list Sort by Cited by (highest) \checkmark > View list in search results format > View references Article Dual-wideband band pass filter using folded cross-stub stepped △ Set document alert 26 impedance resonator Citations Firmansyah, T., Praptodinoyo, S., Wiryadinata, R., ...Alaydrus, M., Wibisono, G. Microwave and Optical Technology Letters, 2017, 59(11), pp. 2929–2934 Show abstract 🗸 🛛 View at Publisher 🤊 🖉 Related documents

Print screen : List jurnal sudah di scopus-author

Print screen : SCIMAGO dan Quartil nya :

