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Abstract : 

The main problem of dual-band bandpass filter (BPF) structures is to control each passband 

performance individually, separately, and independently. This Letter is proposed a dual-band 

BPF based on a source-load coupling structure with stub-block isolation to overcome the 

problem. The lower band resonator structure is placed on the top side, while the upper band 

resonator is placed at the bottom side, with the source-load (SL) coupling structure in the 

middle. An additional stub-block isolation structure is added to the center of the SL coupling 

structure. As a result, we have successfully designed an independent dual-band bandpass filter 

with highly controllable working frequency/ frequency center (fc), bandwidth (BW), reflection 

coefficient (S11), and isolation (ISO) between the passbands. The proposed dual-band BPF was 

fabricated on an RT/Duroid 5880 substrate. Furthermore, this dual-band BPF achieved an 

insertion loss/fractional bandwidth of 0.48 dB/7.71% and 0.35 dB/12.37% at 1.82 GHz and 

2.58 GHz, respectively. The good agreement between the simulated and measured results 

validates the proposed method. 
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1. Introduction 

A highly flexible RF device must be supported by a high-performance bandpass filter 

(BPF) that can be controlled. This requirement has motivated many researchers to produce 

BPFs with controllable performance [1]. Several methods have been proposed to control the 

frequency passband, such as the stepped impedance ring resonator (SIRR) with shorted stubs 

[2], defected and irregular stepped-impedance resonators (DI-SIRs) [3], multilayer resonator 

[4], loop resonator [5], cross resonator [6], substrate-integrated waveguide (SIW) cavities [7], 

and half-mode substrate integrated waveguide (HMSIW) [8]. Furthermore, to increase the 

isolation, some researchers have proposed a circular resonator [9] and a ring resonator. 

Moreover, a quasi-elliptical waveguide resonator was proposed by [10] to control the frequency 

and bandwidth. However, none of the proposed methods has a controllable performance 

frequency, bandwidth, reflection coefficient, and isolation simultaneously. 

In this Letter, a dual-band BPF based on a source-load coupling structure is proposed, as 

shown in Fig. 1(a). It is clearly distinct from the microstrip structure used in [1–11]. The 

topology of the coupling structure is given in Fig. 1(b). Furthermore, MMN denotes the coupling 

matrix values between two resonators for (M=S, 1, 2, L and N=S, 1, 2, L), can be derived as 

follows; 

𝑀𝑀𝑁 =

(

  
 

0 0.307 0
0.307 0.819 0.080
0 0.080 −0.579

−0.389 0 1.000
0 0 0
0 0 0.008

−0.389 0 0
0 0 0

1.000 0 0.008

−25.95 −66.122 0
−66.122 −169.205 −0.116

0 −0.116 0 )

  
 

 

The coefficients of the coupling matrix are taken from the optimization process. By using 

this structure, the frequency, bandwidth, reflection coefficient, and isolation in each passband 

can be adjusted individually with convenience and robustness. The proposed method is 

validated by the good agreement between the simulated and measured results.  
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2. Dual-band BPF based on source-load coupling with stub-block isolation 

The proposed dual-band BPF is constructed by using four important segments, i.e., a 

source-load coupling structure, a lower band resonator, an upper band resonator, and an 

additional isolation structure. The source-load (PIN and POUT) coupling structure is positioned 

in the middle, where (W1, L1) represent the width and length, respectively. Furthermore, the 

lower band resonators are placed at the top, constructed by a coupled-resonator (RA1 and RA2) 

with the back-to-back position, where (W2, L2A, L2B) represent the widths and lengths of the 

lower band resonator. Moreover, the upper band resonators are arranged at the bottom. They 

are composed of a coupled-resonator (RB1 and RB2) with a back-to-back position, where (W3, 

L3A, L3B) represent the widths and lengths of the upper band resonator. The additional isolation 

is added at the center, with (W4, L4) representing the width and length isolation structures, 

respectively. Furthermore, (S1, S2, S3, S4) represent the gaps between the source/load and lower 

band, intercoupled lower band, intercoupled upper band, and source/load and upper band, 

respectively. 

Fig. 1(c) shows the dual-band BPF response. If the lower band or upper band structures 

are applied separately, the transmission coefficient will respond separately. However, if they 

are combined, the interference between two passbands will increase. To reduce interference, 

the isolation structure should be added at the center. Furthermore, the odd-mode structure of 

lower band, even-mode structure of lower band, odd-mode structure of upper band, and even-

mode structure of upper band are shown in Fig 2(a), 2(b), 2(c), and 2(d), respectively. The 

value input impedance of odd-mode at lower band ZIN-LB-odd  can be derived: 

𝑍𝐼𝑁(3) = −𝑗𝑍3 cot 3                                                                                                                         (1) 

𝑍𝐼𝑁(2) = 𝑍2
𝑍𝐼𝑁(3) + 𝑗𝑍2 tan 2

𝑍2 + 𝑗𝑍𝐼𝑁(3) tan 2
                                                                                                       (2) 

𝑍𝐼𝑁−𝐿𝐵−𝑜𝑑𝑑 = 𝑍1
𝑍𝐼𝑁(2) + 𝑗𝑍1 tan 1

𝑍1 + 𝑗𝑍𝐼𝑁(2) tan 1
                                                                                            (3) 
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Moreover, equation (3) can also be expressed as: 

𝑍𝐼𝑁−𝐿𝐵−𝑜𝑑𝑑 = 𝑍1
𝑍2(−𝑗𝑍1 cot 1 + 𝑗𝑍2 tan 2) + 𝑗𝑍3 tan 3 (𝑍2 + 𝑍1 cot 1 tan 2)

𝑍3𝑍2 + 𝑍3𝑍1cot 1 tan 2 + 𝑍2𝑍1cot 1 tan 1 − 𝑍2
2 tan 2 tan 3

       (4)   

with 

𝑍2 =
𝑍2,𝑒 + 𝑍2,𝑜

2
                                                                                                                            (5)  

The resonant can be derived from admittance condition 𝑌𝐼𝑁−𝐿𝐵−𝑜𝑑𝑑  = 0 or impedance condition 

𝑍𝐼𝑁−𝐿𝐵−𝑜𝑑𝑑 =  [1], or it has a denominator equal with zero. 

𝑍3 (
𝑍2,𝑒 + 𝑍2,𝑜

2
) + 𝑍3𝑍1cot 1 tan 2 + 𝑍1 (

𝑍2,𝑒 + 𝑍2,𝑜
2

) cot 1 tan 1

− (
𝑍2,𝑒 + 𝑍2,𝑜

2
)
2

tan 2 tan 3 = 0                                                                 (6) 

Furthermore, the value input impedance of even-mode at lower band ZIN-LB-even  can be derived: 

𝑍𝐼𝑁−𝐿𝐵−𝑒𝑣𝑒𝑛 = 𝑗𝑍1 tan 𝜃1                                                                                                             (7) 

Moreover, the value input impedance of odd-mode at upper band ZIN-UB-odd  can be derived: 

𝑍𝐼𝑁(6) = −𝑗𝑍6 cot 6                                                                                                                     (8) 

𝑍𝐼𝑁(5) = 𝑍5
𝑍𝐼𝑁(6) + 𝑗𝑍5 tan 5

𝑍5 + 𝑗𝑍𝐼𝑁(6) tan 5
                                                                                                  (9) 

𝑍𝐼𝑁−𝑈𝐵−𝑜𝑑𝑑 = 𝑍4
𝑍𝐼𝑁(5) + 𝑗𝑍4 tan 4

𝑍4 + 𝑗𝑍𝐼𝑁(5) tan 4
                                                                                       (10) 

Equation (10) can also be derived as: 

𝑍𝐼𝑁−𝑈𝐵−𝑜𝑑𝑑 = 𝑍4
𝑍5(−𝑗𝑍4 cot 4 + 𝑗𝑍5 tan 5) + 𝑗𝑍6 tan 6 (𝑍5 + 𝑍4 cot 4 tan 5)

𝑍6𝑍5 + 𝑍6𝑍4cot 4 tan 5 + 𝑍5𝑍4cot 4 tan 4 − 𝑍5
2 tan 5 tan 6

   (11)   

with 

𝑍5 =
𝑍5,𝑒 + 𝑍5,𝑜

2
                                                                                                                                (16)  

The resonant can be derived from admittance condition 𝑌𝐼𝑁−𝑈𝐵−𝑜𝑑𝑑  = 0 or impedance condition 

𝑍𝐼𝑁−𝑈𝐵−𝑜𝑑𝑑 =  [1], or it has a denominator equal with zero. 
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𝑍5 (
𝑍5,𝑒 + 𝑍5,𝑜

2
) + 𝑍6𝑍4cot 4 tan 5 + 𝑍4 (

𝑍5,𝑒 + 𝑍5,𝑜
2

) cot 4 tan 4

− (
𝑍5,𝑒 + 𝑍5,𝑜

2
)
2

tan 5 tan 6 =  0                                                      (17) 

Furthermore, the value input impedance of even-mode at upper band ZIN-LB-even  can be derived: 

𝑍𝐼𝑁−𝑈𝐵−𝑒𝑣𝑒𝑛 = 𝑗𝑍4 tan 𝜃1                                                                                                    (18)  

with the impedance (ZN) and electric length (N). 

 

3. Result and discussion 

Figs 3(a) and 3(b) show the relationship between the bandpass frequency /frequency 

center of the lower band response under various lengths L2B and the bandpass 

frequency/frequency center of the upper band response under various lengths L3B, respectively. 

The figures show that by increasing the dimension of L2B, the bandpass frequency of the lower 

band will gradually shift to a lower frequency, while the upper band will remain stable. 

Moreover, the bandpass frequency of the upper band will be shifted by various lengths L3B, 

while the lower band will remain stable. 

Moreover, Figs 3(c) and 3(d) show the relationship the bandwidth characteristics of the 

lower band for various gaps S2, and the bandwidth characteristics of the upper band for various 

gaps S3, respectively. Moreover, the bandwidth of each passband can be controlled individually 

and separately by varying the gaps S2 and S3. It can be seen that by increasing the gap S2, the 

bandwidth of the lower band will become narrower and can be adjusted separately. 

Furthermore, by decreasing gap S3, the bandwidth of the upper band only will increase.  

Figs. 4(a), 4(b), and 4(c) show the reflection coefficient characteristics of the lower band 

for various gaps S2, the reflection coefficient characteristics of the upper band for various gaps 

S3, and the isolation characteristics for various lengths L4, respectively. The reflection 

coefficient value of the lower band can be controlled separately by varying gap S2 without any 
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impact on the upper band. Moreover, the reflection coefficient value of the upper band can be 

adjusted individually by varying gap S3. Furthermore, the isolation characteristics can be 

changed by varying the length L4 without affecting the frequency passband or bandwidth of 

the lower band and upper band. Moreover, Figs 5(a) and 5(b) show the current surface at lower-

band of fc = 1.82 GHz and upper band of fc = 2.58 GHz, respectively. It can be seen that at the 

lower band, the surface current flows at upper part of BPF. Meanwhile, the surface current 

flows at lower part of BPF at the upper band. 

The proposed dual-band BPF was fabricated on an RT/Duroid 5880 substrate with a 

permittivity of 2.2 and a thickness of 1.575 mm. A momentum simulation produced by the 

Advanced Design System (ADS) was used to optimize the structure. Furthermore, the R&S 

ZVA67 VNA was used to measure the BPF performance. The dimensions were as follows (all 

in millimetres): W1 = 1.0, W2 = 1.5, W3 = 1.0, W4 = 0.5, L1 = 10, L2A = 15, L2B = 32, L3A = 15, 

L3B = 15, S1 = 0.5, S2 = 3.0, S2 = 1.5, and S4 = 0.5. The dual-band BPF insertion loss/fractional 

bandwidth was 0.48 dB/7.71% and 0.35 dB/12.37% at 1.82 GHz and 2.58 GHz, respectively. 

Figs. 5(c) and 5(d) show photographs of the fabricated dual-band BPF and comparisons of the 

simulated and measured results, respectively. Moreover, Table 1 shows comparison with some 

previous dual-band BPFs such as ref [11]–[19]. 

The proposed method is validated by the good agreement between the simulated and 

measured results. Furthermore, Table 1 gives the performance comparison of the dual-band 

BPF with some previous works, from which it can be deduced that the proposed BPF structure 

can enable adjustment of the frequency, bandwidth, reflection coefficient, and isolation of each 

passband individually with convenience and robustness.  

4. Conclusions 

We have successfully designed an independent dual-band bandpass filter with a highly 

controllable working frequency/ frequency center, bandwidth, reflection coefficient, and 
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isolation between the passbands. This performance can be obtained by applying the source-

load coupling with a stub-block isolation structure. The proposed dual-band BPF was 

fabricated on an RT/Duroid 5880 substrate. Furthermore, this dual-band BPF achieved an 

insertion loss/fractional bandwidth of 0.48 dB/7.71% and 0.35 dB/12.37% at 1.82 GHz and 

2.58 GHz, respectively. The good agreement between the simulated and measured results 

validates the proposed method. 
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