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Abstract
The main problem of dual-band bandpass filter (BPF)
structures is to control each passband performance indi-
vidually, separately, and independently. This Letter is
proposed a dual-band BPF based on a source-load cou-
pling structure with stub-block isolation to overcome the
problem. The lower band resonator structure is placed on
the top side, while the upper band resonator is placed at
the bottom side, with the source-load (SL) coupling
structure in the middle. An additional stub-block isola-
tion structure is added to the center of the SL coupling
structure. As a result, we have successfully designed an
independent dual-band bandpass filter with highly con-
trollable working frequency/frequency center (fc), band-
width (BW), reflection coefficient (S11), and isolation
(ISO) between the passbands. The proposed dual-band
BPF was fabricated on an RT/Duroid 5880 substrate.
Furthermore, this dual-band BPF achieved an insertion
loss/fractional bandwidth of 0.48 dB/7.71% and
0.35 dB/12.37% at 1.82 and 2.58 GHz, respectively. The

good agreement between the simulated and measured
results validates the proposed method.

KEYWORDS

controllable dual-band BPF, source-load coupling, stub-block isolation

1 | INTRODUCTION

A highly flexible RF device must be supported by a high-
performance bandpass filter (BPF) that can be controlled.
This requirement has motivated many researchers to produce
BPFs with controllable performance.1 Several methods have
been proposed to control the frequency passband, such as
the stepped impedance ring resonator (SIRR) with shorted
stubs,2 defected and irregular stepped-impedance resonators
(DI-SIRs),3 multilayer resonator,4 loop resonator,5 cross
resonator,6 substrate-integrated waveguide (SIW) cavities,7

and half-mode substrate integrated waveguide (HMSIW).8

Furthermore, to increase the isolation, some researchers have
proposed a circular resonator9 and a ring resonator. More-
over, a quasi-elliptical waveguide resonator was proposed
by Reference 10 to control the frequency and bandwidth.
However, none of the proposed methods has a controllable
performance frequency, bandwidth, reflection coefficient,
and isolation simultaneously.

In this Letter, a dual-band BPF based on a source-load
coupling structure is proposed, as shown in Figure 1A. It is
clearly distinct from the microstrip structure used in Refer-
ences 1-11. The topology of the coupling structure is given
in Figure 1B. Furthermore, MMN denotes the coupling matrix
values between two resonators for (M = S, 1, 2, L and
N = S, 1, 2, L), can be derived as follows:

MMN =

0 0:307 0

0:307 0:819 0:080

0 0:080 −0:579

−0:389 0 1:000

0 0 0

0 0 0:008
−0:389 0 0

0 0 0

1:000 0 0:008

−25:95 −66:122 0

−66:122 −169:205 −0:116

0 −0:116 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

The coefficients of the coupling matrix are taken from
the optimization process. By using this structure, the fre-
quency, bandwidth, reflection coefficient, and isolation in
each passband can be adjusted individually with
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(A) (B)

(C)

FIGURE 1 A, proposed dualband BPF with a source-load coupling structure and stub-block isolation; B, topology of the coupling structure;
and C, the dualband BPF response strategy [Color figure can be viewed at wileyonlinelibrary.com]

(A)

(B)

(C)

(D)

FIGURE 2 A, Odd-mode structure lower band; B, even-mode structure lower band; C, Odd-mode structure upper band; and D, even-mode
structure upper band [Color figure can be viewed at wileyonlinelibrary.com]
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convenience and robustness. The proposed method is vali-
dated by the good agreement between the simulated and
measured results.

2 | DUAL-BAND BPF BASED ON
SOURCE-LOAD COUPLING WITH
STUB-BLOCK ISOLATION

The proposed dual-band BPF is constructed by using four
important segments, that is, a source-load coupling structure,
a lower band resonator, an upper band resonator, and an
additional isolation structure. The source-load (PIN and
POUT) coupling structure is positioned in the middle, where
(W1, L1) represent the width and length, respectively. Fur-
thermore, the lower band resonators are placed at the top,
constructed by a coupled-resonator (RA1 and RA2) with the
back-to-back position, where (W2, L2A, L2B) represent the
widths and lengths of the lower band resonator. Moreover,
the upper band resonators are arranged at the bottom. They
are composed of a coupled-resonator (RB1 and RB2) with a
back-to-back position, where (W3, L3A, L3B) represent the
widths and lengths of the upper band resonator. The addi-
tional isolation is added at the center, with (W4, L4)

representing the width and length isolation structures,
respectively. Furthermore, (S1, S2, S3, S4) represent the gaps
between the source/load and lower band, intercoupled lower
band, intercoupled upper band, and source/load and upper
band, respectively.

Figure 1C shows the dual-band BPF response. If the
lower band or upper band structures are applied separately,
the transmission coefficient will respond separately. How-
ever, if they are combined, the interference between two
passbands will increase. To reduce interference, the isolation
structure should be added at the center. Furthermore, the
odd-mode structure of lower band, even-mode structure of
lower band, odd-mode structure of upper band, and even-
mode structure of upper band are shown in Figure 2A-D,
respectively. The value input impedance of odd-mode at
lower band ZIN-LB-odd can be derived:

ZIN 3ð Þ = − jZ3cotθ3 ð1Þ

ZIN 2ð Þ = Z2
ZIN 3ð Þ + jZ2tanθ2
Z2 + jZIN 3ð Þtanθ2

ð2Þ

ZIN−LB−odd = Z1
ZIN 2ð Þ + jZ1tanθ1
Z1 + jZIN 2ð Þtanθ1

ð3Þ

(A) (B)

(C) (D)

FIGURE 3 A, Band pass frequency of the lower band for various lengths L2B; B, band pass frequency of the upper band for various lengths
L3B; C, bandwidth characteristics of the lower band for various gaps S2; and D, bandwidth characteristics of the upper band for various gaps S3
[Color figure can be viewed at wileyonlinelibrary.com]
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Moreover, Equation (3) can also be expressed as:

ZIN−LB−odd =

Z1
Z2 − jZ1cotθ1 + jZ2tanθ2ð Þ+ jZ3tanθ3 Z2 + Z1cotθ1tanθ2ð Þ
Z3Z2 + Z3Z1cotθ1tanθ2 + Z2Z1cotθ1tanθ1−Z22tanθ2tanθ3

ð4Þ
with

Z2 =
Z2,e + Z2,o

2
ð5Þ

The resonant can be derived from admittance condition
YIN − LB − odd= 0 or impedance condition ZIN − LB − odd =∞,1

or it has a denominator equal with zero.

Z3
Z2,e + Z2,o

2

� �
+ Z3Z1cotθ1tanθ2

+ Z1
Z2,e + Z2,o

2

� �
cotθ1tanθ1

−
Z2,e + Z2,o

2

� �2

tanθ2tanθ3 = 0

ð6Þ

Furthermore, the value input impedance of even-mode at
lower band ZIN-LB-even can be derived:

ZIN−LB−even = jZ1tanθ1 ð7Þ
Moreover, the value input impedance of odd-mode at

upper band ZIN-UB-odd can be derived:

ZIN 6ð Þ = − jZ6cotθ6 ð8Þ

ZIN 5ð Þ = Z5
ZIN 6ð Þ + jZ5tanθ5
Z5 + jZIN 6ð Þtanθ5

ð9Þ

ZIN−UB−odd = Z4
ZIN 5ð Þ + jZ4tanθ4
Z4 + jZIN 5ð Þtanθ4

ð10Þ

Equation (10) can also be derived as:

ZIN−UB−odd =

Z4
Z5 − jZ4cotθ4 + jZ5tanθ5ð Þ+ jZ6tanθ6 Z5 + Z4cotθ4tanθ5ð Þ
Z6Z5 + Z6Z4cotθ4tanθ5 + Z5Z4cotθ4tanθ4−Z52tanθ5tanθ6

ð11Þ
with

Z5 =
Z5,e + Z5,o

2
ð16Þ

The resonant can be derived from admittance condition
YIN − UB − odd = 0 or impedance condition ZIN − UB − odd =
∞,1 or it has a denominator equal with zero.

(A) (B)

(C)

FIGURE 4 A, Reflection coef. Characteristics of the lower band for various gaps S2; B, reflection coef. Characteristics of the upper band for
various gaps S3; and C, isolation characteristics for various lengths L4 [Color figure can be viewed at wileyonlinelibrary.com]

4 DENNY AND FIRMANSYAH

http://wileyonlinelibrary.com


Z5
Z5,e + Z5,o

2

� �
+ Z6Z4cotθ4tanθ5

+ Z4
Z5,e + Z5,o

2

� �
cotθ4tanθ4

−
Z5,e + Z5,o

2

� �2

tanθ5tanθ6 = 0

ð17Þ

Furthermore, the value input impedance of even-mode at
upper band ZIN-LB-even can be derived:

ZIN−UB−even = jZ4tanθ1 ð18Þ
with the impedance (ZN) and electric length (θN).

3 | RESULTS AND DISCUSSION

Figure 3A,B show the relationship between the bandpass fre-
quency/frequency center of the lower band response under
various lengths L2B and the bandpass frequency/frequency
center of the upper band response under various lengths L3B,
respectively. The figures show that by increasing the dimen-
sion of L2B, the bandpass frequency of the lower band will
gradually shift to a lower frequency, while the upper band
will remain stable. Moreover, the bandpass frequency of the

upper band will be shifted by various lengths L3B, while the
lower band will remain stable.

Moreover, Figure 3C, D show the relationship the band-
width characteristics of the lower band for various gaps S2,
and the bandwidth characteristics of the upper band for vari-
ous gaps S3, respectively. Moreover, the bandwidth of each
passband can be controlled individually and separately by
varying the gaps S2 and S3. It can be seen that by increasing
the gap S2, the bandwidth of the lower band will become
narrower and can be adjusted separately. Furthermore, by
decreasing gap S3, the bandwidth of the upper band only will
increase.

Figure 4A-C show the reflection coefficient characteris-
tics of the lower band for various gaps S2, the reflection
coefficient characteristics of the upper band for various gaps
S3, and the isolation characteristics for various lengths L4,
respectively. The reflection coefficient value of the lower
band can be controlled separately by varying gap S2 without
any impact on the upper band. Moreover, the reflection coef-
ficient value of the upper band can be adjusted individually
by varying gap S3. Furthermore, the isolation characteristics
can be changed by varying the length L4 without affecting
the frequency passband or bandwidth of the lower band and

FIGURE 5 Current surface at A, lower band of fc = 1.82 GHz; B, upper band of fc = 2.58 GHz; and C, photograph of the proposed method;
and D, comparison of simulated and measured result [Color figure can be viewed at wileyonlinelibrary.com]
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upper band. Moreover, Figure 5A,B show the current surface
at lower-band of fc = 1.82 GHz and upper band of
fc = 2.58 GHz, respectively. It can be seen that at the lower
band, the surface current flows at upper part of BPF. Mean-
while, the surface current flows at lower part of BPF at the
upper band.

The proposed dual-band BPF was fabricated on an
RT/Duroid 5880 substrate with a permittivity of 2.2 and a
thickness of 1.575 mm. A momentum simulation produced
by the Advanced Design System (ADS) was used to opti-
mize the structure. Furthermore, the R&S ZVA67 VNA was
used to measure the BPF performance. The dimensions were
as follows (all in millimeters): W1 = 1.0, W2 = 1.5,
W3 = 1.0, W4 = 0.5, L1 = 10, L2A = 15, L2B = 32, L3A = 15,
L3B = 15, S1 = 0.5, S2 = 3.0, S2 = 1.5, and S4 = 0.5. The
dual-band BPF insertion loss/fractional bandwidth was
0.48 dB/7.71% and 0.35 dB/12.37% at 1.82 and 2.58 GHz,
respectively. Figure 5C,D show photographs of the fabri-
cated dual-band BPF and comparisons of the simulated and
measured results, respectively. Moreover, Table 1 shows
comparison with some previous dual-band BPFs such as
References 11-19.

The proposed method is validated by the good agreement
between the simulated and measured results. Furthermore,
Table 1 gives the performance comparison of the dual-band
BPF with some previous works, from which it can be
deduced that the proposed BPF structure can enable adjust-
ment of the frequency, bandwidth, reflection coefficient, and

isolation of each passband individually with convenience
and robustness.

4 | CONCLUSIONS

We have successfully designed an independent dual-band
bandpass filter with a highly controllable working fre-
quency/frequency center, bandwidth, reflection coefficient,
and isolation between the passbands. This performance can
be obtained by applying the source-load coupling with a
stub-block isolation structure. The proposed dual-band BPF
was fabricated on an RT/Duroid 5880 substrate. Further-
more, this dual-band BPF achieved an insertion loss/frac-
tional bandwidth of 0.48 dB/7.71% and 0.35 dB/12.37% at
1.82 and 2.58 GHz, respectively. The good agreement
between the simulated and measured results validates the
proposed method.
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TABLE 1 Comparison with some previous dualband BPFs

Refs. Freq (GHz) Insertion loss (dB) −3 dB FBW (%)

Independent and controllable

Freq BW Ref. coef ISO
2 1.39/1.82 2.48/3.60 9.30/6.60 Yes – – –
3 2.45/5.20 1.30/2.80 6.93/4.03 Yes – – –
5 5.01/8.25 0.81/0.83 6.59/6.10 Yes – – –
6 1.14/2.31 0.22/1.87 94.19/33.52 Yes – – –
7 3.61/6.40 1.30/1.20 8.20/6.70 Yes – – –
9 2.43/3.73 2.50/1.30 4.50/6.10 – – – Yes
10 2.40/5.20 1.40/3.00 9.20/9.50 – – – Yes
11 3.78/4.82 1.38/1.82 11.3/10.7 Yes – – –
12 0.69/2.67 0.70/1.76 23.5/30.0 – Yes – –
13 1.57/2.38 1.21/1.95 9.90/6.50 – – – Yes
14 2.52/3.54 0.62/0.55 5.90/5.10 Yes – – –
15 8.13/11.13 0.88/1.28 3.90/3.60 Yes – – –
16 2.40/3.20 1.47/1.65 15.4/10.9 Yes Yes – –
17 9.42/9.99 2.20/2.30 3.00/3.30 – Yes – –
18 1.59/1.92 1.49/1.44 6.90/9.40 Yes – – –
19 5.50/12.5 0.50/2.91 92.0/17.0 – Yes – –

This study 1.82/2.58 0.48/0.35 7.71/12.37 Yes Yes Yes Yes

Abbreviations: BW, bandwidth; FBW, fractional bandwidth; ISO, isolation.
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