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Multifunctional and Sensitivity Enhancement of Hybrid
Acoustoplasmonic Sensors Fabricated on 36XY-LiTaO3 with Gold
Nanoparticles for the Detection of Permittivity, Conductivity, and
the Refractive Index
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ABSTRACT: Integration of high-sensitivity sensors with multiple
sensing performance for the environmental detection of
permittivity (εr), conductivity (σ), and the refractive index (n) is
required to support Societies 5.0. However, there are still many
sensors with low sensitivity that stand alone. A shear-horizontal
surface acoustic wave (SH-SAW) sensor is usually used because of
its high-sensitivity performance in detecting electrical properties.
Moreover, localized surface plasmon resonance (LSPR) sensors
show remarkable optical side capability. Here, we have successfully
combined these advantages with an additional benefit of sensitivity
enhancement. We propose a hybrid acoustoplasmonic sensor
generated by integrating SH-SAW and LSPR devices to
simultaneously detect εr, σ, and n. The SH-SAW sensor was
fabricated on a 36XY-LiTaO3 substrate using a developed interdigital transducer. Then, the LSPR sensor was implemented by the
deposition of gold nanoparticles (AuNPs) on the propagation surfaces of the SH-SAW sensor. Fascinatingly, the AuNPs not only
generate the LSPR effect but also enhance the SH-SAW sensor sensitivity. Comprehensive investigations were performed with
atomic force microscopy imaging, CST software used for plasmonic E-field simulation, and hybrid sensing evaluation. Moreover, the
SH-SAW sensitivity enhancement achieved using AuNPs was verified by frequency-domain and time-domain measurements. Thus,
the SH-SAW sensor with AuNPs has a wide εr detection range (25−85), sensing capabilities for ultrasmall σ (0.00528−0.02504 S/
m), and high sensitivity for n detection (45.5−201.9 nm/RIU). The cross-sectional effects were also evaluated. The effect of the
LSPR device on the SH-SAW device was examined by turning the light OFF or ON (hereafter OFF/ON). The impact of the SH-
SAW device on the LSPR device was investigated by turning the sine signal OFF/ON. We found that the SH-SAW sensor was not
impacted by light. Interestingly, the presence of the SH-SAW sensor affects the positions of the AuNPs, which consistently generates
a small blueshift in the LSPR effect. However, insignificant variation was noted in independent performances. In general, the SH-
SAW sensor with AuNPs shows multifunctional independent characteristics and high-sensitivity performance, making it suitable for a
chemical environment, with the possibility of integration with a wireless network.

KEYWORDS: multifunctional sensor, SH-SAW, LSPR, permittivity sensor, conductivity sensor, refractive index sensor

1. INTRODUCTION

In recent years, several studies have focused on designing
multifunctional sensors for integrated and diverse applica-
tions1−4 to support Societies 5.0. These multifunctional
sensors have several advantages, such as low cost, low energy
consumption, light weight, and containing massive informa-
tion.5,6 Several interesting materials and phenomena, such as
ionic materials,7,8 nanocarbon structures,9 graphene
oxide,10−13 piezoelectric sensors based on zinc oxide
materials,14−17

film bulk acoustic wave resonators
(FBARs),18,19 quartz crystal microbalances (QCMs),20,21

Rayleigh surface acoustic waves (R-SAWs),22−26 and shear
horizontal surface acoustic waves (SH-SAWs),27−30 are

exploited to develop multifunctional sensors. In general, to

produce multifunctional sensing performance, two or more

devices should be combined. However, multifunctional sensing

devices have several common problems, such as low sensitivity,

slow response, weak electrocoupling, difficult fabrication
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processes, ease of breaking, unstable nanostructures in
chemical environments, and immature technology.
To address these problems, a multifunctional sensor based

on a piezoelectric substrate, such as FBAR, QCM, R-SAW, or
SH-SAW, is usually utilized. Such a sensor has a large
electromechanical coupling coefficient (Ks

2) and a high
piezoelectric factor, leading to a large energy conversion
coefficient from electrical to mechanical energies and vice
versa.31 In addition, it employs mature technology and
fabrication techniques.32,33 Pedro et al.18 proposed a dual-
mode thin-film FBAR with multiple longitudinals for temper-
ature and mass loading sensing. This sensor was evaluated
experimentally. Sternhagen et al.19 proposed a combination of
surface-skimming bulk-wave and SAW devices for integrated
acoustic gas and temperature sensors. QCMs are another type
of piezoelectric material sensor. Friedt et al.21 proposed and
combined a QCM sensor with a surface plasmon resonance
(SPR) device for collagen/fibrinogen sensing. However, the
SPR sensor has drawbacks, such as its need for a prism;
therefore, the measured system is complex.
A multifunctional sensor based on the Rayleigh mode was

proposed in refs.22,26 A LiNbO3 piezoelectric substrate is
usually used to generate the Rayleigh mode, which is favorable
for temperature sensors or gas applications. Renaudin et al.24

proposed integrating an R-SAW device with a SPR sensor for
microfluidic systems. R-SAW was utilized for active micro-
fluidic mixing, and the SPR sensor was used for detection. The
use of the R-SAW device accelerated the binding of the avidin-
biotin assay. Moreover, R-SAW devices can be utilized for
multifunctional sensors, such as pressure and temperature
sensors25 and physical quantity and temperature sensors.26

Other piezoelectric sensor devices of interest are SH-SAW
sensors.27−30 Their performance in liquid sensing applications
is excellent. Furthermore, they have multifunctional capabilities
for engine oil evaluation,27 the detection of conductivity and
pH in the liquid phase,29 taste sensors,34 permittivity sensors,35

and monitoring the density and viscosity of liquids.30 Okuda et

al.28 proposed integrating an SH-SAW sensor on a LiTaO3
substrate with a graphene field-effect transistor to create a
graphene surface acoustic wave (GSAW) device. This hybrid
GSAW sensor was successfully implemented and evaluated for
simultaneous charge and mass detection. SH-SAW devices
have several advantages, such as low power consumption, low
cost, wireless control, and ability to operate in a liquid
environment.36 In brief, several interesting reports indicate that
piezoelectric materials have significant potential to be
combined with other devices to obtain multifunctional sensors.
As a novelty, we propose a hybrid acoustoplasmonic

multifunctional sensor that integrates an SH-SAW device
with a localized SPR (LSPR) device, as illustrated in Figure
1(a). In brief, the contributions of this study are as follows.

1. The proposed hybrid sensor device can simultaneously
examine electrical and optical characteristics, such as
relative permittivity (εr), conductivity (σ), and refractive
index (n), with high sensitivity.

2. The SH-SAW sensor was fabricated on a 36XY-LiTaO3
substrate using a developed interdigital transducer
(IDT). Then, the LSPR sensor was developed by the
deposition of gold nanoparticles (AuNPs) on the
propagation surface of the SH-SAW device. The
deposition of AuNPs on the propagation surface of the
SH-SAW device not only generates the LSPR effect but
also increases the SH-SAW sensor sensitivity. Next, we
will refer to the hybrid device as the SH-SAW sensor
with AuNPs.

3. The fundamental examination of the proposed SH-SAW
sensor with AuNPs was performed by examining the
performances of the two components, namely, the SH-
SAW and LSPR devices. The performance of the SH-
SAW sensor was evaluated based on the change in
attenuation (Δα/k0) and change in velocity (ΔV/V).
This was followed by an examination of the performance
of the LSPR sensor, in which the peak position (λP),
wavelength shift (Δλ), and refractive index unit (RIU)

Figure 1. (a) Hybrid acoustoplasmonic multifunctional sensor proposed by integrating an SH-SAW sensor with an LSPR device, (b) particle
displacement of the SH-SAW device, (c) detailed case response of the acoustoelectric sensor investigation based on the SH-SAW evaluation, and
(d) detailed case response of the plasmonic sensor investigation based on the LSPR evaluation.
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sensitivity were assessed. Ethanol (EtOH) (from 0 to
100% solutions with a step increase of 10%) was used as
a liquid sample.

4. The deposition of AuNPs on the 36XY-LiTaO3 substrate
with annealing and quenching has dual beneficial
functions. It not only generates the LSPR effect but
also increases the sensitivity of the SH-SAW sensor.

5. Cross-sectional effects, such as LSPR to SH-SAWs and
vice versa, were also evaluated. The effect of the LSPR
device on the SH-SAW device was examined by turning
the light source OFF/ON. In contrast, the effect of the
SH-SAW device on the LSPR device was investigated by
turning the sine signal from the signal generator OFF/
ON. We found that the SH-SAW sensor was not
impacted by light. Interestingly, the presence of the SH-
SAW sensor led to the vibration of AuNPs, which
consistently generated a small blueshift in the LSPR
effect. However, an insignificant change was noted in the
independent performances.

6. CST software was utilized to evaluate the E-field
plasmonic distribution for a single AuNP and dimer
AuNP on a 36XY-LiTaO3 substrate in a liquid
environment. Comprehensive experiments, such as
atomic force microscopy (AFM), high-precision oscillo-
scope experiments, vector network analysis (VNA), and
UV−vis spectrophotometry, were performed for surface
imaging, time-domain evaluation, frequency-domain
acoustoelectric sensing characterization, and plasmonic
sensing investigation, respectively.

Finally, the proposed hybrid multifunctional sensor was
successfully developed by integrating two mature technologies
with several advantages, such as simultaneous detection with
highly independent characteristics, good stability in a chemical
environment, and a significant possibility of integration with a
wireless network.

2. THEORY AND SIMULATION
The SH-SAW device based on the 36XY-LiTaO3 substrate has
a piezoelectric effect. The piezoelectric effect can convert an
electric potential into mechanical stress and vice versa. An IDT
structure should be used to excite the SH-SAW device. If an
AC voltage is applied to the IDT, it produces an electric field.
Thus, the electric field penetrates the 36XY-LiTaO3 substrate
and becomes stressed.
Figure 1(b) illustrates that the SH-SAW device demon-

strates particle displacement in any direction. However, to
analyze shear-horizontal waves, bulk waves are usually not
considered because of high damping. Therefore, only the shear
wave in the y-direction is examined. In brief, the particle
displacement of the shear wave is described as follows:36−38

= ω γ−A x y t A y t e( , , ) ( , ) j t x
0 (1)

where A(x, y, t) is the particle displacement, A0 is the
maximum amplitude of the particle displacement, ω is the
angular frequency, and t is the time. The complex propagation
coefficient wave γ is determined to be expressed as
follows:36−38

γ α= + jk0 (2)

where α is the attenuation and k0 is the wavenumber. The
wavenumber is calculated as follows:

ω=k
V0 (3)

where V is the velocity of the SH-SAW sensor. The variations
in wave propagation characteristics owing to different environ-
ments or additional loads, such as liquid samples at the
propagation surface between input and output IDTs at a
particular frequency, can be determined by the variations in the
propagation coefficient.

γ αΔ = Δ − Δ
k k

j
V

V0 0 (4)

where Δγ represents the change in the complex propagation
coefficient. ΔV/V and Δα/k0 are impacted by changes in mass
(m), viscoelastic constant (c), ε, σ, temperature (T), viscosity
(η), density (ρ), and pressure (P). ΔV is determined as
follows:36−38
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Note that Δα is not a function of m. Therefore, Δα can be
calculated as follows:36−38
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In our experiment, we used constant values of m, c, T, η, ρ,
and P. A nonmetalized propagation surface loaded by a liquid
sample was used so that Δε and Δσ were not zero. Therefore,
eqs 5 and 6 can be simplified as eqs 7 and 8, respectively:

ε
ε

σ
σΔ = ∂

∂
Δ + ∂

∂
ΔV

V V
(7)

α α
ε

ε α
σ

σΔ = ∂
∂

Δ + ∂
∂

Δ
(8)

In brief, eqs 7 and 8 indicate that the values of ΔV/V and
Δα/k0 are highly impacted by Δε and Δσ. Kondoh et al.
successfully derived a detailed calculation of the ΔV/V and
Δα/k0 of an SH-SAW liquid sensor with electrical character-
istics, such as relative permittivity and conductivity. The values
of ΔV/V and Δα/k0 are calculated using eqs 9 and 10:39,40
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where σ′ is the conductivity of the liquid sample, ε0 is the
vacuum permittivity, εr is the permittivity of the water or liquid
reference, εr′ is the permittivity of the sample liquid, εp

τ is the
effective permittivity of the substrate used, and Ks

2 is the
electromechanical coupling factor when a reference liquid is
loaded on the surface. If εp

τ and εr are constant, we can see that
the changes in ΔV/V and Δα/k0 are impacted only by the
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values of σ′, εr′, and Ks
2. The values of σ′ and εr′ are

dependent on the sample liquid. The value of Ks
2 is directly

connected with the phase velocity of the SH-SAW, or it is
inversely proportional to the time propagation (TP) of the
surface waves, as determined by eq 11:

∝ ∝K V
T
1

s
2

P (11)

This means that even if εp
τ, εr, σ′, and εr′ are constant, the

final values of ΔV/V and Δα/k0 could be different because of
the different Ks

2 values. Ks
2 is dependent on the surface

propagation structure. The modified surface propagation
structure can lead to higher/lower values of TP, V, or Ks

2. In
this study, the propagation structure was modified by the
deposition of AuNPs in the middle of the propagation plane.
This deposition leads to a lower value of TP or higher values of
V or Ks

2.
Details of the acoustoelectric sensor based on the SH-SAW

device are presented in Figure 1(c). Case 1 (from A0 to A1)
and case 2 (from B0 to B1) focused on the changes in the
values of ΔV/V and Δα/k0 owing to the change in the liquid
sample for the SH-SAW sensors without and with AuNPs,
respectively. Moreover, case 3 (from A1 to B1) explained the
change in the values of ΔV/V and Δα/k0 owing to the
modification of the surface propagation structure. The effect of
the light OFF/ON condition on the SH-SAW sensor with
AuNPs was also investigated to observe the cross-sectional
effect of the presence of light.
The LSPR effect was obtained if metal nanoparticles

(MeNPs) such as gold, silver, and platinum nanoparticles

(AuNPs, AgNPs, and PtNPs) were deposited on a substrate
such as glass or piezoelectric material and interacted with light.
In this study, we generated LSPR by combining AuNPs, a
36XY-LiTaO3 substrate, a water/EtOH liquid medium, and
visible light (r < < λ). The LSPR effect was analytically studied
by Gustav Mie using Maxwell’s equations.41,42 He proposed
several terms, such as scattering (σsca), extinction (σext), and
absorption (σabs) terms. The σsca, σext, and σabs terms were
determined as follows:41,42
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σ σ σ= −abs ext sca (14)

where εr and εr’ are the real and imaginary parts of the relative
permittivity of the AuNPs, respectively. Therefore, NP is the
volume of the particle, and εm is the medium relative
permittivity. Based on eqs 12−14, σsca, σext, and σabs were
highly dependent on εm, εr, εr’, and NP. If εr, εr’, and NP were
constant, σsca, σext, and σabs were determined by the value of εm
for the medium. This characteristic was utilized for LSPR
sensors, such as refractive index detectors.43−46 Therefore, the
changes in refractive index and its correlation with the changes
in wavelength are expressed as follows:47−49

λΔ = − [ − ]−S n n e( ) 1 d l
r m r

2 /m m (15)

where Δλ is the shift in wavelength, Sr is the sensitivity of the
refractive index sensor, nm is the refractive index of the

Figure 2. (a) εr and εr’ from the CST simulation data; (b,c) simulation result of the E-field distribution at the AuNP on 36XY-LiTaO3 for water and
the 100 wt % EtOH medium, respectively; (d−f) 2D plasmonic E-field interaction among the 36XY-LiTaO3 substrate, AuNP, and water medium at
λ = 500 nm for a single AuNP, dimeric AuNPs with near (d1) interdistances and dimeric AuNPs with far (d2) interdistances, respectively; (g−i) 2D
plasmonic E-field interaction among the 36XY-LiTaO3 substrate, AuNP, and EtOH medium at λ = 500 nm for a single AuNP, dimeric AuNPs with
d1 interdistances, and dimeric AuNPs with d2 interdistances, respectively.
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medium, nr is the reference refractive index, dm is the thickness
of the dielectric medium, and lm is the electromagnetic decay
length characteristic of the sensor. For the bulk medium, Sr is
usually simplified to eq 16:47−49

λ= Δ
−

S
n nr

m r (16)

Note that the presence of the SH-SAW device causes the
AuNPs to move dynamically. This condition causes the
interdistance of the AuNPs to fluctuate, leading to changes
in the plasmonic E-field. The changes in the plasmonic E-field
generate tunable LSPR.50−54 In this study, we also investigated
the tunable LSPR effect caused by the SH-SAW device on the
performance of the LSPR sensor. The detailed scenario
considered for the investigation of the performance of the
LSPR sensor is described below.
As mentioned above, we developed an LSPR sensor through

the deposition of AuNPs on an SH-SAW sensor with a 36XY-
LiTaO3 substrate and water/EtOH as a sample or liquid
medium. Here, we used only the SH-SAW device with AuNPs
because of the LSPR effect. In contrast, the SH-SAW sensor
without AuNPs did not generate an LSPR response. The
detailed case response of the SH-SAW device with AuNPs for
LSPR sensor investigation is presented in Figure 1(d), that is,
cases 4, 5, and 6. Cases 4 (from C0 to C1) and 5 (from D0 to
D1) were evaluated for Dl based on the impact of the OFF/ON
sine signal on water and EtOH liquid samples, respectively.
Case 6 (from C0 to D0 followed by D1) focused on the change
in the Dl value owing to the change in the liquid sample
consisting of mixtures with different concentrations of EtOH
and water. Subsequently, the OFF/ON sine signal was also
calculated for case 6, which was illustrated as the peak shifted
from D0 to D1. Note that the OFF sine signal implies that SH-
SAWs are not generated and vice versa.
CST software was used to evaluate the E-field plasmonic

distribution at AuNPs on the 36XY-LiTaO3 substrate with
water/EtOH as a liquid medium. The software was developed
based on a finite integration technique, that is, an algorithm
based on a finite-difference time-domain (FDTD) function. It
can be used for plasmonic calculation.55,56 Before running the
CST simulation, the εr and εr’ data of 36XY-LiTaO3, water,
EtOH, and AuNPs should be imported into the CST software
database in the tabulated data structure. The εr and εr’ data
were acquired from ref.57 and are represented graphically in
Figure 2(a).
Figure 2(b,c) presents the simulation results of the E-field

distributions at the AuNPs on 36XY-LiTaO3 with the water or
EtOH medium, respectively. The simulation was carried out
from 400−900 nm as a function of the distance normalized by
wavelength. The resonant behavior of AuNPs occurs at

wavelengths of 500−600 nm. In this study, we can see that
the maximum plasmonic E-field occurs at approximately 700
nm. This does not imply that the resonance of AuNPs shifted
but implies that the maximum E-field at approximately 700 nm
is an additional peak caused by 36XY-LiTaO3 and AuNPs
interacting with water or EtOH. The maximum plasmonic E-
field at 700 nm is 14.74 V/m for the water medium and 10.88
V/m for the EtOH medium.
Different maximum plasmonic E-field values occur because

of the different plasmonic characteristics of the liquid medium.
Based on Figure 2(b,c), we can also determine the skin depth.
Skin depth (δ) appears when the plasmonic E-field is equal to
1/e or 37% of the peak. The maximum plasmonic E-field value
and the normalized skin depth position for different values of λ
and different liquid media are summarized in Table 1. We can
see that the maximum plasmonic E-field for the water medium
was consistently higher than that for the EtOH medium for all
wavelength values. A higher E-field value reduces the skin
depth effect, which means that the E-field is focused on the
surface area with a lower spread at depth. This condition
occurs at the skin depth for 36XY-LiTaO3−water
(δ 3 6XY ‑L iT aO3 − wa t e r ) and 36XY-LiTaO3 − EtOH
(δ36XY‑LiTaO3 − EtOH) for all wavelengths.
Figure 2(d−f) displays the 2D plasmonic E-field interactions

among the 36XY-LiTaO3 substrate, AuNPs, and water medium
at λ = 500 nm for single AuNPs and dimer AuNPs with near
(d1) and far (d2) interdistances, respectively. Figure 2(d)
shows that the dipole plasmonic E-field was produced at the
single AuNP with a maximum plasmonic E-field of 3.77 V/m.
When we added the second AuNP, generating the near-dimer
AuNP structure depicted in Figure 2(e), the plasmonic E-field
increased to 6.00 V/m. A larger plasmonic E-field value
occurred because of the strong interaction between AuNPs, as
illustrated by the orange color. However, if the interdistances
among dimer AuNPs were increased, the plasmonic E-field
returned to its initial value as a single AuNP structure, as
displayed in Figure 2(f). It has a maximum plasmonic E-field of
3.76 V/m.
Figures 2(g−i) displays the 2D plasmonic E-field inter-

actions among the 36XY-LiTaO3 substrate, AuNP, and EtOH
medium at λ = 500 nm for single AuNPs, dimer AuNPs with d1
interdistances, and dimer AuNPs with d2 interdistances,
respectively. We can see that the plasmonic interaction in
the EtOH medium has characteristics similar to those in the
water medium. However, the value of the maximum plasmonic
E-field obtained with the EtOH medium is lower than that
obtained with the water medium: 3.72, 5.81, and 3.71 V/m for
single AuNPs, dimeric AuNPs with d1 interdistances and
dimeric AuNPs with d2 interdistances, respectively. The
difference in the maximum plasmonic E-field values occurred
because of the different plasmonic characteristics of the liquid,

Table 1. Maximum E-Field Value and Skin Depth Position for Various Wavelengths and Surrounding Liquids

AuNP and 36XY-LiTaO3 substrate

water surrounding EtOH surrounding

wavelength (nm) maximum E-Field (V/m) δ36XY‑LiTaO3 − Water (λ) maximum E-Field (V/m) δ36XY‑LiTaO3 − EtOH (λ)

400 2.48 0.0092 2.36 0.0099
500 3.77 0.0046 3.72 0.0038
600 5.86 0.0021 5.42 0.0033
700 14.74 0.0017 10.88 0.0030
800 5.87 0.0060 5.77 0.0055
900 3.96 0.0075 4.30 0.0071
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such as the difference in the refractive index values. Several
interesting things can be noted about this simulation result,
such as the combination of AuNPs and the water/EtOH
medium on the 36XY-LiTaO3 piezoelectric substrate, generat-
ing a successful light-producing LSPR phenomenon. The
different media produced different LSPR responses and could
be used for various sensing devices. In addition, the plasmonic
E-field value obtained for dimer AuNPs with longer distances
was lower than that obtained for single AuNPs, which was
caused by the long distance between AuNPs. Therefore, its
dimer structure can be considered monomer AuNPs.
Comparing the E-field values of the dimer (3.76 V/m) and
monomer (3.77 V/m) shows that the values are equal, and
there is not a significant difference. Moreover, if the AuNPs
were dynamically moving owing to the presence of the SH-
SAW device, the LSPR response would be slightly different.
This characteristic will be explained in the section that
describes the LSPR sensor evaluation.

3. RESULTS AND DISCUSSION
3.1. Morphological characterization. Figures 3(a−d)

presents a captured 2D AFM image (of size 200 nm × 200
nm), the height of AuNPs at the line, the 3D surface of the
AFM image, and the particle distribution, respectively.
In addition, the captured 2D AFM image of size 1000 nm ×

1000 nm, height of AuNPs at the line, 3D surface of the AFM
image, and particle distribution are presented in Figures 3(e−

h), respectively. Table 2 presents the AFM image surface
analysis parameters of AuNPs on the 36XY-LiTaO3 piezo-

electric substrate, such as AFM capture size, number of
particles (N), maximum height of surface (SZ), average
diameter equivalent (DEQ), and interparticle distance (ID) of
AuNPs. Based on the particle distribution chart, we can see
that the IDs are approximately 30−40 nm, and they were
calculated from center to center of the AuNPs. The diameters
of the AuNPs (DEQ) are from 10 to 70 nm. This size
characteristic is significant because the LSPR effect will be
generated if the particles are significantly smaller than the
incident wavelength (r < < λ).41,42

3.2. Scattering Parameters. Scattering parameters are
generally used to describe the ratio of the scatter power.58−61

The main parameters are the reflection coefficient (S11) and
transmission coefficient (S21). S11 is the ratio between the

Figure 3. (a−d) Captured 2D AFM image with a size of 200 nm × 200 nm, the height of AuNPs at the line, the 3D surface of the AFM image, and
the particle distribution, respectively. (e−h) Captured 2D AFM image with a size of 1000 nm × 1000 nm, the height of AuNPs at the line, the 3D
surface of the AFM image, and the particle distribution, respectively. (i) Magnitude of S11, (j) magnitude of S21, and (k) comparison of the phase
results of S11 and S21 for the SH-SAW sensor without AuNPs and SH-SAW sensor with AuNPs under light OFF/ON conditions.

Table 2. Surface Analysis Parameters of AuNPs, Such as the
Amount of au Deposited, Annealing Conditions, Quenching
Conditions, AFM Capture Size, Number of Particles (N),
Maximum Height of the Surface (SZ), Average Diameter
Equivalent (DEQ), and Interparticle Distance (ID) of AuNPs

AFM capture size (nm) N SZ (nm) DEQ (nm) ID (nm)

200 × 200 44 12 22.95 30.15
1000 × 1000 605 17 26.39 40.65
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reflected and input power, that is, S11 = 10log (PREF/PIN),
where PREF is the reflected power and PIN is the input power.
S21 is the ratio between the output and input power, that is, S21
= 10log (POUT/PIN), where POUT is the output power. For the
sensor evaluation, we should pay close attention to the
frequency shift (Δf) of the highest value of the magnitude of
S21 and the phase difference (Δθ) of S21 at the same frequency
or the center frequency. VNA is commonly used to measure
the magnitude (dB) and phase (○) of S11 and S21.
Figure 3(i) displays the magnitude of S11 for the SH-SAW

device without AuNPs and SH-SAW device with AuNPs under
light OFF/ON conditions at frequencies of 46 and 54 MHz.
We can see that the magnitudes of the S11 values are −7.32 and
−7.53/−7.52 dB at a frequency of 51.5 MHz for the SH-SAW
device without AuNPs and the SH-SAW device with AuNPs
under light OFF/ON conditions, respectively. The result
indicates that all magnitudes of S11 are small, which means that
the electrical signal has successfully transferred from the signal
generator to the device with low reflected power. Under the
light OFF/ON condition, the result indicates that the S11
values are almost identical. Therefore, the OFF/ON light
condition does not affect the S11 parameter of the SH-SAW
device.
Figure 3(j) displays the magnitudes of S21 for the SH-SAW

device without AuNPs and the SH-SAW device with AuNPs
under light OFF/ON conditions between 46 and 54 MHz.
The magnitude of S21 for the SH-SAW device without AuNPs
at a frequency of 51.5 MHz is −11.91 dB. It has a larger S21
value than the SH-SAW device with AuNPs under light OFF/
ON conditions, with values of −20.75 dB/−20.77 dB. We can
see that the additional AuNPs on the surface of the SH-SAW
device will change the transmission coefficient of the device. As
mentioned above, for sensor evaluation, we should pay close
attention to the frequency that generates the highest
magnitude S21. The highest magnitude S21 for the SH-SAW
device without AuNPs was −11.02 dB at a frequency of 51.2
MHz, and the highest magnitude S21 for the SH-SAW device
with AuNPs under the light OFF/ON condition was −16.66

dB/−16.67 dB at a frequency of 51.3 MHz. We can see that
the frequency has shifted to a higher position. In Figure 3(k),
the phase results of S11 and S21 are compared. The phase values
at the central frequency of 51.5 MHz for the SH-SAW device
without AuNPs and SH-SAW device with AuNPs under light
OFF/ON conditions were 3.55○ and 57.96○/57.30○,
respectively. The SH-SAW device with AuNPs produced a
larger phase value.
In summary, from Figures 3(i−k), we can explain the S-

parameter in terms of two main comparisons: the comparison
of the SH-SAW device without AuNPs and the SH-SAW
device with AuNPs and the comparison of the SH-SAW device
with AuNPs only under light OFF and light ON conditions. In
the initial comparison, there were insignificant changes in the
magnitude of S11. The results indicated that PREF was low for
both devices. Even though S11 was not the main parameter for
the sensor examination, it was essential to ensure that the
electric signal was successfully transmitted to the device with
minimal reflection.
The main part of the sensor characteristics was evaluated by

examining the variations in the magnitude and phase of S21. We
can see the different magnitudes and phases of the S21 results
for the SH-SAW device without AuNPs and the SH-SAW
device with AuNPs. The SH-SAW device without AuNPs
produced a higher S21 magnitude than the SH-SAW device
with AuNPs and also had a different S21 phase value. In
particular, the SH-SAW device with AuNPs under light OFF/
ON conditions has a higher frequency and larger phase value
than the SH-SAW device without AuNPs. On the other hand,
the SH-SAW device with AuNPs under light OFF/ON
conditions had a higher velocity. From this preliminary result,
we can safely say that the sensor devices have different
characteristic sensing performances owing to their different
initial results. A detailed evaluation of the sensing performance
and its characteristics for different loaded liquid samples will be
described in the following section.
For the second comparison, we can see similar results for the

magnitude and phase of S11 and S21 under the light OFF/ON

Figure 4. (a) Detailed position of the liquid sample for the SH-SAW sensor. (b, c) Detailed positions of the liquid sample for the SH-SAW device
with AuNPs under light OFF and ON conditions, respectively. (d) σ and εr of EtOH at concentrations ranging from 0 to 100 wt %. (e, f)
Magnitude and phase of the S21 of the SH-SAW sensor without AuNPs and SH-SAW sensor with AuNPs under light OFF/ON conditions after
loading with the liquid sample, respectively.
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condition. The results indicate that light was not impacted by
the electrical result of the SH-SAW device. This occurred
because neither the 36XY-LiTaO3 substrate nor AuNPs were
photoresistive or photoelectric materials. The separated and
uncorrelated condition is an advantage in producing an
independent multifunctional sensor.
3.3. SH-SAW Sensors without and with AuNPs. The

performance of the SH-SAW sensor was evaluated based on
the changes in Δα/k0 and ΔV/V. The Δα/k0 and ΔV/V data
were calculated from the VNA system that was connected to
the SH-SAW sensor without AuNPs and the SH-SAW sensor
with AuNPs. Commonly, the VNA system has an input power
of 0 dBm or 1 mW, and SH-SAWs are generated. In this study,
ethanol (EtOH) (from 0−100 wt % with a step increase of 10
wt %) was used as a liquid sample. Distilled water was used to
dilute EtOH from higher to lower concentrations. Note that 0
wt % EtOH means distilled water and 100 wt % EtOH means
pure EtOH without additional water. The liquid sample was
placed in a silicon pool that was constructed at the center of
the device. Figure 4(a−c) depicts the detailed positions of the
liquid samples for the SH-SAW device without AuNPs and the
SH-SAW device with AuNPs under light OFF and light ON
conditions, respectively. The effects of the light OFF and light
ON conditions were also examined to determine the impact of
the presence of light on the acoustoelectric sensor, as depicted
in Figure 4(b,c), respectively.

Before the performances of the SH-SAW sensor without
AuNPs and the SH-SAW sensor with AuNPs were
investigated, the electrical characteristics of the liquid sample
were measured. Figure 4(d) displays the σ and εr of EtOH
from 0−100 wt %. The σ of EtOH was measured using a CM-
40 S conductive system (Toa, Japan), and εr was obtained
from ref.62 The values of εr were 80.73 and 25.00 for 0 and 100
wt % EtOH, respectively. The σ values were 0.00528 and
0.02504 S/m for 0 and 100 wt % EtOH, respectively.
Figure 4(e) depicts the magnitude of S21 for the SH-SAW

sensors without and with AuNPs under light OFF/ON
conditions after loading with the liquid sample. To obtain
robust data, we used three devices: Dev (1), Dev (2), and Dev
(3). In particular, the magnitudes of S21 for the SH-SAW
sensor without AuNPs and SH-SAW sensor with AuNPs under
the light OFF/ON condition were −12.25 dB and −20.88 dB/
−20.85 dB for 0 wt % EtOH and −15.78 dB and −27.68 dB/−
27.67 dB for 100 wt % EtOH, respectively. A comparison of
the magnitudes of S21 for different EtOH concentrations and
devices is plotted in Figure 4(e). Several interesting things can
be noted about this result. First, compared to the SH-SAW
device, the SH-SAW sensor with AuNPs under light OFF/ON
conditions has a smaller S21 value at 0 wt % EtOH or the
starting value. However, the difference in magnitude (ΔS21) for
the SH-SAW device without AuNPs is lower than that for SH-
SAW sensor with AuNPs under light OFF/ON conditions

Figure 5. (a, b) Details of Δα/k0 and ΔV/V for different εr values; (c, d) details of Δα/k0 and ΔV/V for different σ value, respectively; (e)
proposed time-domain measurement; and (f) comparison of the Ta values of the SH-SAW sensor without AuNPs and SH-SAW sensor with
AuNPs.
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from 0 wt % EtOH to 100 wt % EtOH, with values of −3.35
dB and −6.80 dB/−6.82 dB, respectively. The results indicate
that the deposition of AuNPs on 36XY-LiTaO3 makes the
sensor more responsive to changes in the liquid sample.
Moreover, we can also see that the presence of light does not
impact the performance of the acoustoelectric sensor.
As mentioned above, in addition to the magnitude of S21, the

S21 phase is also significant for sensing characterization. Figure
4(f) depicts the phases of the SH-SAW sensor without AuNPs
and SH-SAW sensor with AuNPs under light OFF/ON
conditions after loading with the liquid sample. The phases of
the S21 values for the SH-SAW sensor without AuNPs and the
SH-SAW sensor with AuNPs under light OFF/ON conditions
are −2.39○ and 27.85○/27.87○ for 0 wt % EtOH, respectively.
Meanwhile, the phases of the S21 values for the SH-SAW
sensor without AuNPs and SH-SAW sensor with AuNPs under
light OFF/ON conditions were 112.40○ and 185.32○/185.31○

for 100 wt % EtOH, respectively. The phase of the S21 values
corresponds to the SH-SAW sensor without AuNPs and SH-
SAW sensor with AuNPs under light OFF/ON conditions.
The other phase results for the different liquid concentrations
are presented in Figure 4(f).
In accordance with the S21 magnitude changes, the phase

changes of S21 also have similar results. The SH-SAW sensor
with AuNPs under light OFF/ON conditions had a Δθ value
of 157.47○/157.46○, which is larger than the Δθ value for SH-
SAW of 144.79○. In short, the additional AuNPs on the SH-
SAW sensor produce larger ΔS21 and Δθ values than the SH-
SAW sensor without AuNPs. This result is favorable because
the proposed sensor or SH-SAW sensor with AuNPs is more
reactive to the different characteristics of the liquid samples.
Moreover, the OFF/ON light condition is not affected by the
response of the SH-SAW sensor with AuNPs, which indicates
the great independence of the acoustoelectric sensor.
Figure 5(a,b) presents Δα/k0 and ΔV/V for the relative

permittivity of EtOH, respectively. For 0 wt % EtOH, εr = 80,
which is equal to that of water, and for 100 wt % EtOH, εr =
25. In this study, we used water as the reference liquid.
Therefore, the initial value or starting point of Δα/k0 and ΔV/
V will be the same at a high εr value or for the liquid water
reference.
In particular, Figure 5(a) illustrates the changes in the Δα/

k0 value by varying εr from 25 to 80. We can see that at εr = 80,
the value of Δα/k0 for the SH-SAW sensor with AuNPs under
the light OFF/ON condition is zero because we use this point
as the reference position. After we gradually decreased εr to 25
with an increase in EtOH concentration, we could see that the
final Δα/k0 values were 0.00013 and 0.00025/0.00025 for the
SH-SAW sensor without AuNPs and SH-SAW sensor with
AuNPs under light OFF/ON conditions, respectively. Figure
5(a) presents further details of the Δα/k0 value for different
values of εr. We can also see the trend line equation and value
of R2 that fit the data points. The R2 values are 0.9925 and
0.9936/0.9881 for the SH-SAW sensor without AuNPs and
SH-SAW sensor with AuNPs under light OFF/ON conditions,
respectively. Figure 5(b) presents ΔV/V curves for different
values of εr. We can see that at the highest concentrations of
EtOH, εr = 25 and ΔV/V = 0.00064 and 0.00088/0.00088,
with R2 values of 0.9915 and 0.9936/0.9828, respectively,
corresponding to the SH-SAW sensor without AuNPs and SH-
SAW sensor with AuNPs under light OFF/ON conditions,
respectively.

Figures 5(c,d) depicts Δα/k0 and ΔV/V for σ EtOH,
respectively. The conductivity of 0 wt % EtOH was 0.0250 S/
m or equal to that of water and that of 100 wt % EtOH was
0.0050 S/m. The zero points of Δα/k0 and ΔV/V occur in
water. In detail, Figure 5(c) depicts Δα/k0 for different values
of σ. At the lowest value of σ, Δα/k0 = 0.00013 and 0.00025/
0.00025 and R2 = 0.9771 and 0.9851/0.9868 for the SH-SAW
sensor without AuNPs and SH-SAW sensor with AuNPs under
light OFF/ON conditions, respectively. Figure 5(d) displays
ΔV/V for different values of σ. ΔV/V = 0.00064 and 0.00088/
0.00088 and R2 = 0.9540 and 0.9817/0.9829 for the SH-SAW
sensor and SH-SAW sensor with AuNPs under light OFF/ON
conditions, respectively.
Several interesting points can be noted from Figure 5(a−d).

The starting points or zero points of Δα/k0 and ΔV/V are the
highest values of εr and σ, 80 and 0.0250 S/m, respectively.
After deriving the trend line equation, we found that all the R2

values were higher than 0.90, indicating that the trend line has
a very good fit to the data point. The OFF/ON light condition
did not change the Δα/k0 and ΔV/V values. These data are
significant, as they indicate the independence of the acousto-
electric SH-SAW sensor with the AuNPs in the presence of
light.
In Figure 5(a−d), all the green lines represent case 1 or the

SH-SAW devices. The red and blue lines represent case 2 or
the SH-SAW sensor under the light OFF/ON condition. We
can see that the values of Δα/k0 and ΔV/V for case 1 are
always consistently lower than Δα/k0 and ΔV/V for case 2.
Finally, the difference values of Δα/k0 and ΔV/V for the SH-
SAW sensor without AuNPs and SH-SAW sensor with AuNPs
under the light OFF/ON condition for the lowest values of εr
and σ, 25 and 0.0050 S/m, respectively, are represented by
case 3. Figure 1(b) depicts the three cases.
Case 3 was unique, even when the liquid sample had the

same concentration. The final values of Δα/k0 and ΔV/V were
different. Based on the model proposed in eq 11, derived from
eqs 9 and 10, even the liquid sample was constant. The final
values of Δα/k0 and ΔV/V can be different owing to the
different characteristics of the device, such as Ks

2. We found
that the deposition of AuNPs at the propagation surface
increased Ks

2. To prove this parameter, we proposed a time-
domain measurement, as depicted in Figure 5(e).
The time-domain measurement was prepared by a sinusoidal

signal with a frequency of 51.5 MHz and modulated with a
single pulse signal. The signal is usually termed the amplitude
shift keying (ASK) signal. We used the ASK signal as an input
signal, and it was divided into two equal parts using a power
divider. The first signal was directly connected to an
oscilloscope and is known as a transmitted signal. The second
signal was connected to the input IDT of the device, and then,
the output IDT was connected to the oscilloscope and used as
the received signal. The time-domain measurement data can be
made robust in several ways. The power divider should have a
low reflected signal intensity to avoid undesired mixed signals,
the cable and connector should have constant parameters for
repeatable measurements, and the oscilloscope should have
good sensitivity. The time-domain signal result is presented in
Figure 5(f). In brief, the time of arrival (Ta) is the difference in
time between signal transmission and signal receipt. We now
compare the Ta values of the SH-SAW sensor without AuNPs
and SH-SAW sensor with AuNPs. The average Ta ̅ for the SH-
SAW sensor without AuNPs is 2.798 μs, and the average Ta ̅ for
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the SH-SAW sensor with AuNPs is 2.710 μs. Using an identical
supporting measurement system, a lower value of Ta ̅ implies a
higher value of V or Ks

2. In brief, we can say that the deposition
of AuNPs on the surface with annealing and quenching will
increase Ks

2. The increase in Ks
2 was proven in several ways,

such as the frequency-domain measurement and time-domain
measurement of the Ta ̅ value. Moreover, for more general
results, optimization to increase the velocity is needed. This
could be achieved by varying the annealing temperature,
quenching method, and size or structure of AuNPs. Then, its
effect could be investigated by simulation or time-domain and
frequency-domain measurements.
3.4. Tunable LSPR Using the SH-SAW Sensor with

AuNPs on a Liquid. As mentioned above, the SH-SAW
sensor produces a dynamic LSPR effect owing to the acoustic
movement of AuNPs. Therefore, an investigation of the
tunable LSPR effect should be conducted, and the complete
procedure is shown in Figure 6(a). The experiment was carried
out at the room temperature of 23.5C and humidity of 48%.
Moreover, the temperature of the SH-SAW sensor with AuNPs
was also investigated, as shown in Figure 6(b). We can see that
the temperature during the experiment was stable at
approximately 21.3 and 22.3C. Therefore, we can conclude
that the effect of temperature on the SH-SAW sensor with
AuNPs is small. Figure 6c,d depicts the proposed LSPR
measurement strategy. Water was used as a sample for the SH-
SAW sensor with AuNPs. It was located at the sensing area or
center of the propagation surface, on which the AuNPs were
deposited. A silicon pool was used to hold a liquid sample, as
depicted in Figure 6c,d for the water and 100 wt % EtOH
samples, respectively. For this measurement, we used two
variables, namely, the liquid sample concentration and input

voltage. In brief, an EtOH sample with concentrations
increasing from 0 to 100 wt % with a step of 10 wt % was
utilized as the liquid sample. In addition, the amplitude of the
input sine signal was varied from 0 to 10 V with a step size of 1
V.
Figure 6(e,f) depicts the reflectance value and wavelength

shift for different amplitudes from 0 to 10 V for water and 100
wt % EtOH, respectively. Figure 6(e) shows that the peak
position for water is approximately 524−527 nm at 0 V. The
zero voltage indicates that the SH-SAW does not appear.
However, after we turn on the signal generator, we can see the
peak position shifting. This condition was obtained because of
the presence of the SH-SAW device. The SH-SAW device
synchronously stimulates the dynamic movement of AuNPs.
Therefore, the dynamically moving AuNPs produced a tunable
LPSR effect.
The amplitude and frequency of the SH-SAW vibration are

proportional to the sine signal’s input voltage and frequency.
The investigation of dynamic LSPR required a highly
synchronous time between light capture and the frequency of
SH-SAWs to consider light reflection with high precision.
However, our laboratory does not yet have the tools to retrieve
these data. We proposed another robust investigation method,
such as comparing to 0 V, to examine the dynamic tunability of
LSPR. Using this method, we successfully obtained robust and
stable data regarding the dynamic tunability of LSPR. We can
see that the peak position of the reflection has a consistent
blueshift. Figure 6(e,f) depicts the details of the peak reflection
shift with different voltages compared to those at 0 V in water
and 100 wt % EtOH liquid, respectively. Figures S1(a−c),
S2(a−c), and S3(a−c) depict the peak reflection shifts at
various voltages for various concentrations of EtOH. In brief,

Figure 6. (a) Procedure used to examine the tunable LSPR effect. (b) Temperature of the SH-SAW sensor with AuNPs during the experiment; (c,
d) Proposed LSPR measurement strategy for water and EtOH samples, respectively; and (e, f) reflectance value and wavelength shift with different
sine signal voltages from 0 to 10 V for water and 100 wt % EtOH, respectively.
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we found several interesting results. First, the SH-SAW
stimulates the dynamic movement of AuNPs, and the motion
of the AuNPs generates dynamic plasmonic E-field values.
Therefore, the difference in the plasmonic E-field values
produces tunable LSPR. Using the OFF/ON sine signal
comparison strategy, we can see from the robust tunable LSPR
data that the peak position has a consistent blueshift. After we
increased the EtOH concentration of the liquid sample, a
redshift in LSPR occurred. Thus, turning on the voltage source
will produce a blueshift. Therefore, there are two simultaneous
shifts, a redshift and a blueshift, because of the higher EtOH
concentrations and the presence of the SH-SAW device. The
effect of the simultaneous shifts on the LSPR sensor
characteristics was investigated as follows.
3.5. LSPR Sensor Using the SH-SAW Sensor with

AuNPs. As mentioned above, the LSPR effect is generated
only by the SH-SAW device with AuNPs. Therefore, the
investigation of LSPR sensor performance for refractive index
detection was carried out only on the SH-SAW device with
AuNPs. However, we should pay attention to the existence of
the SH-SAW sensor and its effect on the LSPR sensor. Figure
7(a,b) depicts the LSPR sensor evaluation considering the
difference in EtOH concentrations under the sine signal OFF
(0 V) and ON (2 V) conditions, respectively. The OFF
condition of the sine signal indicates that the SH-SAW sensor
does not exist and vice versa. The LSPR sensor functions as a
refractive index detector. Figure 7(c) depicts the correlation

between the EtOH concentration and the refractive index n.
The n data were acquired from ref.62 The n values of air, water,
and 100 wt % EtOH were 1.000, 1.333, and 1.3614,
respectively. The maximum n value of 1.3658 occurs at 80
wt % EtOH. Figure 7(d) depicts the n value and its peak
position under OFF (0 V) and ON (2 V) conditions. We can
see that a higher n value will increase the position of λ. It
would be interesting to extend the discussion by comparing
Figure 1(d) and Figure 7(d). Case 4 occurred for the water
response under OFF (0 V) and ON (2 V) conditions,
representing positions C0 (523.5 nm) and C1 (522.3 nm),
respectively. Case 5 was applied for the EtOH result response,
with characteristics similar to those of case 4. Finally, case 6
has a unique characteristic, in which the shift from C0 (water,
OFF, 523.5 nm) to D0 (80 wt % EtOH, OFF, 582.2 nm) is
caused by an increase in n, followed by the shift from D0 (80
wt % EtOH, OFF, 582.2 nm) to D1 (80 wt % EtOH, ON,
578.4 nm) caused by the SH-SAW sensor.
Figure 7(e) presents the correlation between n and Δλ. The

value of Δλ was obtained by comparing the peak position of
the sample with that of air (n = 1.000). Δλ was plotted under
the OFF sine and ON sine signal conditions. It is essential to
see the effect of the SH-SAW on Δλ. The trend lines of the Δλ
values on the OFF and ON sine signals were plotted
simultaneously. We can see that the trend lines have similar
curves and almost fit each other. The R2 values obtained for
the OFF and ON sine signal conditions were 0.93 and 0.95,

Figure 7. (a, b) LSPR sensor evaluation with different EtOH concentrations under sine signal OFF (0 V) and ON (2 V) conditions, respectively.
(c) Correlation between the EtOH concentration and refractive index (n) value. (d) n value and its peak position under OFF (0 V) and ON (2 V)
conditions. (e) Correlation between the n value and Δλ. (f) Sr of the LSPR sensor for the OFF and ON sine signals.
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respectively. R2 indicates that the trend line has a good fit to
the data point. Figure 7(f) depicts the Sr of the LSPR sensor
for the OFF and ON sine signals. We can see that both curves
have the same route. The presence of the SH-SAW sensor did
not significantly impact the performance of the LSPR sensor.
Finally, Table 3 compares the sensitivity of the standalone or

multifunctional sensor. We can see that the hybrid sensor has
good sensitivity performance and multifunctional capability.
Moreover, compared to the SH-SAW sensor without AuNPs,
the SH-SAW sensor with AuNPs has better sensitivity
characteristics.
Note that the SH-SAW sensor sensitivity is affected not only

by AuNPs but also by the annealing temperature,63−67

quenching, and the propagation structure of the SH-SAW
sensor.68−71 Similar to the SH-SAW sensor sensitivity, the
LSPR sensor sensitivity is also affected by the size, distance,
and structure of the nanoparticle and its interaction with the
medium.72−74 In addition, the simulation of AuNPs with
different radii is shown in Figure S4(a) for the air medium and
Figure S4(b) for the EtOH liquid, Figure S4(c) shows the σabs
values, and Figure S4(d) shows the sensitivity effect.
Simulation of the dimer AuNPs with different distances is
shown in Figure S4(e) for air and Figure S4(f) for the EtOH
liquid, Figure S4(g) shows the σabs values, and Figure S4(h)
shows the sensitivity effect. Simulation of the AuNPs with a
trimer structure is shown in Figure S4(i) for air and Figure
S4(j) for the EtOH liquid, Figure S4(k) shows the σabs value,
and Figure S4(l) shows the sensitivity effect. Overall, on the
basis of this interesting finding, we successfully developed and
investigated a hybrid acoustoplasmonic sensor with multifunc-

tional, simultaneous, high-sensitivity, and independent per-
formance.

4. CONCLUSIONS

In conclusion, a hybrid acoustoplasmonic multifunctional
sensor with high sensitivity was successfully implemented.
The sensor can simultaneously detect εr, σ, and n. The SH-
SAW sensor was fabricated on a 36XY-LiTaO3 substrate by
developing IDTs. The LSPR sensor was implemented by the
deposition of AuNPs in the middle of the surface propagation
plane of the SH-SAW sensor. The deposition of AuNPs on the
propagation surface of the SH-SAW sensor with annealing and
quenching not only generates the LSPR effect but also
increases the SH-SAW sensor sensitivity. The increase in SH-
SAW sensitivity achieved by using AuNPs was verified by time-
domain and frequency-domain measurements. The perform-
ance of the SH-SAW sensor was evaluated based on the values
of Δα/k0 and ΔV/V, and the performance of the LSPR sensor
was evaluated based on the values of λP, Δλ, and Sr.
Comprehensive experiments were performed using AFM,
oscilloscope, VNA, and UV−vis spectrophotometry for surface
imaging, time-domain evaluation, frequency-domain acousto-
electric sensing characterization, and plasmonic sensing
investigation, respectively. Thus, the SH-SAW sensor with
AuNPs has a wide εr detection range (25−85), sensing
capabilities for ultrasmall σ (0.00528−0.02504 S/m), and high
sensitivity for n detection (45.5−201.9 nm/RIU). The cross-
sectional effects were also evaluated. The effect of LSPR on the
SH-SAW sensor was examined by turning the light OFF/ON.
The impact of the SH-SAW sensor on LSPR was investigated

Table 3. Comparison of the Sensitivity of the Standalone and Multifunctional Sensorsa

conductivity
sensor sensitivity
(× 103) (1/(S/

m))

permittivity sensor
sensitivity (× 106)
dimensionless)

refractive index sensor
sensitivity (nm/RIU)

ref device method
electric

signal ON
light
ON

α
σ

Δ
Δ

k/
σ

Δ
Δ
V V/ α

ε
Δ
Δ

k/

r ε
Δ

Δ
V V/

r |Sr|

29 SH-SAW (51 MHz) acoustic yes NA 1.71 1.36
34 SH-SAW (50 MHz) acoustic yes NA 2.50 12.0
33 SH-SAW (30 MHz) acoustic yes NA 5.00 30.0
32 SH-SAW (100 MHz) acoustic yes NA 2.55 10.6
35 SH-SAW (σ’/f = 1) acoustic yes NA 5.00 13.0
43 Si/Quartz with AuNPs plasmonic NA yes 87.8

Si/Quartz with AuNPs
annealing

plasmonic NA yes 116.8

44 glass with AuNPs plasmonic NA yes 21.1−81.2
45 glass with AuNPs plasmonic NA yes 34−48

glass with AuNPs and
immobilized

plasmonic NA yes 68

46 glass with AuNPs plasmonic NA yes 70−100
75 glass AuNPs plasmonic NA yes 40−90.8

glass AuNPs with annealing
quenching

plasmonic NA yes 103.6−240.4

76 glass Au Nanoisland plasmonic NA yes 93
glass Au Nanoisland
annealing

plasmonic NA yes 114

This
work

SH-SAW acoustic yes NA 6.50 32.0 2.36 11.6
SH-SAW with AuNPs acoustic yes OFF 12.5 44.0 4.55 16.0

plasmonic OFF yes 31.1−192.0
hybrid acoustic-
plasmonic

yes yes 12.5 44.0 4.55 16.0 45.5−201.9

aNA = not applicable
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by turning the sine signal OFF/ON. We found that the SH-
SAW sensor was not impacted by light. Interestingly, the
presence of the SH-SAW sensor caused the AuNP position to
vibrate and consistently generated a small blueshift in the
LSPR effect. However, it did not significantly change the
independent performance. In addition, for more general
results, optimization to increase the velocity and enhance the
sensitivity is needed. This could be achieved by varying the
annealing temperature, quenching method, and size or
structure of AuNPs and using different materials, such as
silver (Ag). Then, its effect could be investigated by simulation
or time-domain and frequency-domain measurements. Finally,
the proposed hybrid multifunctional sensor was successfully
developed by integrating two mature technologies and
possessed several advantages, such as simultaneous detection
with high sensitivity and independent characteristics, good
stability in chemical environments, and the significant
possibility of integration with a wireless network.

5. EXPERIMENTAL SECTION
5.1. SH-SAW Sensor. A 36XY-LiTaO3 single crystal (Yamaju

Ceramics Co. Ltd., Japan) was used as the piezoelectric substrate, as
depicted in Figure S5(a). The preparation process was followed by
cleaning the substrate using a paper wipe (Beamcot M-3II Asahi
Kasei, Japan), 99.8 + % acetone liquid [(CH3)2CO) (Wako Pure
Chemical Industries Ltd., Japan)], 99.9 + % 2-propanol
(CH3CHOHCH3, Wako Pure Chemical Industries Ltd., Japan), and
an ultrasonic cleaner (Branson Yamato 1200, Japan). Next, the
substrate was dried using compressed air (Model CFD07B-8.5, Serial
DM0428, Anest Iwata Co., Japan). This step was followed by the
deposition of chromium and gold, as depicted in Figure S5(b,c),
respectively. Chromium (99.99%, F-Company, Japan) and gold metal
materials (1.6 mm) with a diameter Ø of 1.0 mm (Tokuriki Honten
Co. Ltd., Japan) were prepared and deposited using a vacuum thermal
evaporator (VTE G-3, Chiyurikaki Kikai Seisakusho Co. Ltd., Japan).
To fabricate the IDTs, UV exposure and etching processes were

utilized, as depicted in Figure S5(d,e), respectively. Before UV
exposure, the device was cleaned using a N2 gas blower (MD 920,
Linicon., Japan). The process was followed by coating hexamethyldi-
silazane and a photoresist conductor (OFPR, Tokyo Ohka Kogyo Co.
Ltd., Japan) using an active spin coater (ACT-220, Active Corp.,
Japan) and baking at a temperature of 115 °C using a hot plate (MH-
180CS, As-one Ltd., Japan). The mask (Toyo PPM Corp., Japan) was
covered with the device before UV exposure using an MJB UV-400
aligner (Suss Aligner 400). Subsequently, the device was baked again
at a temperature of 115 °C. For the etching and development of the
IDTs, an NMD-3 (Tokyo Ohka Kogyo Co. Ltd., Japan) liquid and a
99.8 + % [(CH3)2CO) acetone solution (Wako Pure Chemical
Industries Ltd., Japan)] were utilized carefully and gently.
5.2. LSPR Sensor Based on the SH-SAW Sensor with AuNPs.

To deposit AuNPs on the SH-SAW device, the IDTs should be
masked, as illustrated in Figure S5(f). Gold (5.4 ± 0.1 mg, Ø = 0.5
mm) from Tokuriki Honten Co. Ltd., Japan, was deposited using
VTE G-3 (Chiyurikaki Kikai Seisakusho Co. Ltd., Japan), as depicted
in Figure S5(g). Thereafter, the mask was removed from the device,
annealed at 500 °C for 5 min, and quenched to room temperature, as
depicted in Figure S5(h). AuNPs were formed by a short annealing
time and quenching75 or annealing.76 In addition, annealing and
quenching can form a strong bond between the AuNPs and the
substrate.77−79 Therefore, repeatable measurements can be performed
comfortably without worrying about the AuNPs being wiped away.
The final proposed SH-SAW device with AuNPs is depicted in Figure
S5(i).
5.3. Instrumentation Used for Measurement. As a liquid

sample, 99.5 + % ethanol (C2H5OH) liquid (Wako Pure Chemical
Industries Ltd., Japan) was used as a sample liquid at a concentration
of 0−100 wt %. The conductivity was measured using a CM-40 S

conductive system (CM Toa, Japan). For the physical and
morphological investigation, an Eclipse E600 microscope (Nikon,
Japan) was used to investigate the physical IDT structure.
Morphology data were analyzed and visualized using AFM (SPA-
400, Seiko Instruments Inc. (SII), Japan) and Gwyddion 2.55
software,80 respectively. A vector network analyzer (43954A VNA HP
Agilent, USA), WF1967 multifunction signal generator (NF
Corporation, Japan), and InfiniVison MSKOX4033A high-precision
oscilloscope (Keysight, USA) were utilized for SH-SAW sensor
investigation and acoustoelectric evaluation. Finally, a light source
(Model: 5−2300 unpolarized, Soma Optics, Ltd., Japan), USB4000
UV−vis spectrophotometer (Ocean Optics, Inc., USA), and OPwave
+ software were used for the LSPR sensor examination and
characteristic measurements.
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