The Effect of Airflow Speed as Cooling Media in the Hardening Process to the Hardness, Corrosion Rate and Fatigue Life of Medium Carbon Steel

Article Preview

Abstract:

Carburizing is a method for obtaining a sturdy material surface. This hard surface is used for machine elements that intersect with other materials, so failure due to wear can be avoided. However, this increase in hardness has always been followed by decreased ductility. This condition certainly lowers the fatigue life of the material. For that, it is necessary to compromise between surface hardness and ductility. This study used AISI 1045 steel, which has a surface roughness of 0.4 and 4.7 μm with carburation media used, is a mixture of 80% coconut shell charcoal and 20% Barium carbonate. The sample was given the pack carburization treatment at 850°C and holding time for 3 hours, and then cooled in the open air. The samples were reheated at 850°C, holding time for 17 minutes, and then cooled with airflow at speeds of 10.34, 15.51, and 20.06 m/s for 30 minutes. This research shows that the surface of steel with a roughness of 0.4 μm has excellent performance with the hardness and corrosion level respectively 228.6 HV and 2.3586 mpy at cooling airflow rate of 20.06 m/s while the fatigue life of material occurs at the speed of airflow cooling 10.43 m/s.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1045)

Pages:

40-49

Citation:

Online since:

September 2021

Export:

Price:

* - Corresponding Author

[1] M. Raffik bin Khiyon, S.M. Salleh, Effect of Heat-Treatment on the Hardness and Mechanical Properties of Boron Alloyed Steel, MATEC Web Conf. 90 (2017) 1–6. https://doi.org/10.1051/matecconf/20179001014.

DOI: 10.1051/matecconf/20179001014

Google Scholar

[2] Supriyono, The Effects of Pack Carburizing Using Charcoal on Properties of Mild Steel, Media Mesin J. Ilm. Tek. Mesin 19 (2018) 38–42. https://doi.org/10.23917/mesin.v19i1.5812.

DOI: 10.23917/mesin.v19i1.5812

Google Scholar

[3] A.A. Hmud, H.M. Mahan, A.S. Jomah, Effect of Cooling Media and Tempering Temperature on the Mechanical Properties of Reinforcement Steel, Int. J. Appl. Eng. Res. 13 (2018) 3979–3987.

Google Scholar

[4] C. Martinez, F. Briones, M. Villarroel, R. Vera, Effect of Atmospheric Corrosion on the Mechanical Properties of SAE 1020 Structural Steel, Materials (Basel). 11 (2018) 1–17. https://doi.org/10.3390/ma11040591.

DOI: 10.3390/ma11040591

Google Scholar

[5] I. Equbal, P. Alam, R. Ohdar, K.A. Anand, M.S. Alam, Effect of Cooling Rate on the Microstructure and Mechanical Properties of Medium Carbon Steel, Int. J. Metall. Eng. 5 (2016) 21–24.

Google Scholar

[6] E. Yu, H. Jung, K.-S. Kim, E.-J. Kim, J. Kim, Influence of Carbide Formation on Tensile and Fatigue Properties of Carburized Steels, Appl. Microsc. 43 2013) 81–87. https://doi.org/10.9729/AM.2013.43.2.81.

DOI: 10.9729/am.2013.43.2.81

Google Scholar

[7] J.M. Nagie, The Effect of Cooling Rate on Mechanical Properties of Carbon Steel (St 35), Diyala J. Eng. Sci. 07 (2014) 109–118.

DOI: 10.24237/djes.2014.07108

Google Scholar

[8] N.M. Ismail, N.A.A. Khatif, M.A.K.A. Kecik, M.A.H. Shaharudin, The effect of heat treatment on the hardness and impact properties of medium carbon steel, IOP Conf. Ser. Mater. Sci. Eng. 114 (2016) 1–4. https://doi.org/10.1088/1757-899X/114/1/012108.

DOI: 10.1088/1757-899x/114/1/012108

Google Scholar

[9] K. Jang, T. Kim, K. Kim, The Effect of cooling rates on carbide precipitate and microstructure of 9CR-1MO oxide dispersion strengthened (ODS) steel, Nucl. Eng. Technol. 51 (2019) 249–256. https://doi.org/10.1016/j.net.2018.09.021.

DOI: 10.1016/j.net.2018.09.021

Google Scholar

[10] A.T. Aprilliansyah, Sunardi, M.S. Anwar, E. Mabruri, Pengaruh suhu dan waktu tempering terhadap struktur mikro, kekerasan, dan ketahanan abrasif baja cor modifikasi CA-15, J. Met. Indones. 41 (2019) 29–36. https://doi.org/10.32423/jmi.2019.v41.29-36.

DOI: 10.32423/jmi.2019.v41.29-36

Google Scholar

[11] S. Prifiharni, M.T. Sugandi, R.R. Pasaribu, S. Sunardi, E. Mabruri, Investigation of corrosion rate on the modified 410 martensitic stainless steel in tempered condition, IOP Conf. Ser. Mater. Sci. Eng. 541 (2019) 1–7. https://doi.org/10.1088/1757-899X/541/1/012001.

DOI: 10.1088/1757-899x/541/1/012001

Google Scholar

[12] E. Mabruri, R.R. Pasaribu, M.T. Sugandi, S. Sunardi, Effect of high temperature tempering on the mechanical properties and microstructure of the modified 410 martensitic stainless steel, AIP Conf. Proc. 1964 (2018) 1–7. https://doi.org/10.1063/1.5038314.

DOI: 10.1063/1.5038314

Google Scholar

[13] S. Sunardi, R. Lusiani, A.O. Fitra, Pengaruh pack carburizing dan kekasaran permukaan terhadap umur fatik material poros baja S45C, J. Foundry 3 (2013) 7–12.

Google Scholar

[14] Š. Major, V. Jakl, Š. Hubálovský, Effect of carburizing on fatigue life of high-strength steel specimen under push-pull loading, Adv. Eng. Mech. Mater. 2 (2014) 143–146.

Google Scholar

[15] K. Tokaji dan M. Akita, Effect of carburizing on fatigue behaviour in a type 316 austenitic stainless steel, WIT Trans. Eng. Sci. 55 (2007) 53–62. https://doi.org/10.2495/SECM070061.

DOI: 10.2495/secm070061

Google Scholar

[16] P. Kula, K. Dybowski, S. Lipa, B. Januszewicz, R. Pietrasik, R. Atraszkiewicz, E. Wolowiec, Effect of the content of retained austenite and grain size on the fatigue bending strength of steels carburized in a low-pressure atmosphere, Met. Sci. Heat Treat. 56 (2014) 440–443. https://doi.org/10.1007/s11041-014-9778-x.

DOI: 10.1007/s11041-014-9778-x

Google Scholar

[17] T.M. Loganathan, J. Purbolaksono, J.I. Inayat-Hussain, N. Wahab, Effects of carburization on expected fatigue life of alloys steel shafts, Mater. 32 (2011) 3544–3547. https://doi.org/10.1016/j.matdes.2011.02.004.

DOI: 10.1016/j.matdes.2011.02.004

Google Scholar

[18] R. Fragoudakis, S. Karditsas, G. Savaidis, N. Michailidis, The effect of heat and surface treatment on the fatigue behaviour of 56SiCr7 spring steel, Procedia Eng. 74 (2014) 309–312.

DOI: 10.1016/j.proeng.2014.06.268

Google Scholar

[19] M.A. Abdulrazzaq, Studying the fatigue properties of hardened for carbon steel, Int. J. Comput. Eng. Res. 06 (2016) 9–13.

Google Scholar

[20] Sujita, R. Soenoko, E. Siswanto, T.D. Widodo, Study on fatigue strength of pack carburizing steel SS400 with alternative carburizer media of pomacea canalikulata lamarck shell powder, Int. J. Appl. Eng. Res. 13 (2018) 8844–8849.

DOI: 10.30574/gjeta.2022.11.2.0087

Google Scholar

[21] K. Takahashi, H. Osedo, T. Suzuki, S. Fukuda, Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening, Eng. Fract. Mech. 193 (2018) 151–161. https://doi.org/10.1016/j.engfracmech.2018.02.013.

DOI: 10.1016/j.engfracmech.2018.02.013

Google Scholar

[22] R. Yeşildal, The effect of heat treatments on the fatigue strength of H13 hot work tool steel, (2018) 1–13. https://doi.org/10.20944/preprints201812.0226.v1.

DOI: 10.20944/preprints201812.0226.v1

Google Scholar