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Solving University Course Timetabling Problem Using Localized Island
Model Genetic Algorithm with Dual Dynamic Migration Policy
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The University Course Timetabling Problem (UCTP) is a scheduling problem of assigning a teaching event in a certain
time and room by considering the constraints of university stakeholders such as students, lecturers, and departments. This
problem becomes complicated for universities with a large number of students and lecturers. Moreover, several universities are
implementing student sectioning, which is a problem of assigning students to classes of a subject while respecting individual
student requests, along with additional constraints. Such implementation also implies the complexity of constraints, which is
larger accordingly. However, current and generic solvers have failed to meet the scalability and reliability requirements for student
sectioning UCTP. In this paper, we introduce the localized island model genetic algorithm with dual dynamic migration policy
(DM-LIMGA) to solve student sectioning UCTP. Our research shows that DM-LIMGA can produce a feasible timetable for
the student sectioning problem and get better results than previous works and the current UCTP solver. Our proposed solution
also consistently yield lower violation number than other algorithms, as evidenced by UCTP benchmark experiment results.
© 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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1. Introduction

The University Course Timetabling Problem (UCTP) is a
scheduling problem of assigning a teaching event in a certain time
and room by considering the constraints of university stakeholders
such as students, lecturers, and departments. The constraints could
be hard (encouraged to be satisfied) or soft (better to be fulfilled).
Regarding its difficulty, Garey included timetabling as an NP-
hard problem [1]. However, some universities, such as Telkom
University [2] and Purdue University [3], can have a large number
of students and classes. This condition increases the problem
complexity because the search space also increases. The constraint
number, which also becomes larger, makes the problem even more
complicated.

Moreover, several universities such as Telkom University [2]
and the University of Waterloo [4] implement student sectioning.
Student sectioning is a problem of assigning students to classes
of a subject while respecting individual student requests along
with additional constraints [5]. Therefore, the fulfillment of each
student’s preference is encouraged as well.

In regular timetabling, we place student enrollment (the process
by which the students choose their classes) after the class timetable
becomes available. Contrarily, in student sectioning, students
choose a set of preferred classes first, and then the system
will create a timetable based on their preferences. Thus, student

a Correspondence to: Alfian A. Gozali. E-mail:
alfian@tass.telkomuniversity.ac.id

*Graduate School of Information, Production, and Systems, Waseda
University, 2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135,
Japan

**Institute of Liberal Arts and Science, Kanazawa University, Kanazawa,
Japan

sectioning significantly increases the problem complexity. As a
result, the number of search spaces grows enormously, due to
the increase in the number of students, other variables, and
involvement of their constraints.

For example, a university such as Telkom University can have a
significant increase of its stakeholders. The number of students at
Telkom University has increased from 6570 in 2011 to 23 451 in
2016. This number is a result of merging four universities: Telkom
Institute of Technology, Telkom Polytechnic, Telkom Institute of
Management, and Telkom School of Arts. As a result, the UCTP
solver also must cover the scalability requirement. Scalability is
the ability of a computing process to be used in a various ranges
of capabilities.

UCTP is a minimizing optimization problem, so the objective
is to minimize all the predefined constraint violations for each
of the teaching events. Accordingly, there are several approaches
attempting to solve this complex problem, such as the constraint
satisfaction problem [5], local search [6–8], Tabu search [9,10], ant
colony algorithm [11], and hybrid algorithms [12–17]. Therefore,
we need a new solution that supports problem scalability and gives
a feasible timetable at the same time. Hence, this paper introduces
the localized island model genetic algorithm with dual dynamic
migration policy (DM-LIMGA).

DM-LIMGA implements localization strategy island model GA
(LIMGA), which has solved theoretical case studies [18,19] with
various complexities. Furthermore, the adaptation of the dual
dynamic migration policy (DDMP) is used to maintain the pop-
ulation diversity in LIMGA better [20]. Finally, the combination
of LIMGA and DDMP in DM-LIMGA will have a significant
advantage for overcoming student sectioning UCTP. Furthermore,
UCTP is a real-world problem which is very complicated. So,
DM-LIMGA needs modification in terms of problem formulation,
encoding, and slave islands.

© 2019 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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Taken together, the primary motivation of this work is how
to modify DM-LIMGA for student sectioning UCTP. In detail,
the main goals of this research are (i) to formalize a real-world
scaling student sectioning UCTP, (ii) to modify DM-LIMGA to
meet the problem requirements, and (iii) to analyze DM-LIMGA’s
performance in handling student sectioning UCTP in the terms of
violation number, scalability, and reliability.

This paper consists of six sections. We organize the remainder of
this paper as follows. Section 2 talks about the student sectioning
UCTP. Section 3 explains the DM-LIMGA concept in detail.
Section 4 gives the DM-LIMGA design to meet UCTP problems.
Section 5 shows how we conducted the experiments, results, and
analysis. Section 6 includes the conclusion and discussion of
this work.

2. University Course Timetabling Problem

Generally, UCTP is a problem of arranging a set of teaching
events (events) into a predefined packet of time and room while
satisfying all constraints within the problem. Equation (1) is the
formulation of a packet (q) of time (t) and room (r):

q = (t , r) (1)

Time could be different from one university to another, which
could be varied over weeks, days, hours, or even minutes. For
example, a university could implement 40 min for a time, while
another university could have 60 min. Rooms are UCTP resources
that can vary in capacity, facility, ownership, and specialization
(e.g., theory and practice classroom). The notations in Table I.
give UCTP formulation.

An event (e) consists of a lecturer (l ) who teaches a certain
class (c) with a set of students (S ), which is defined by following
notation:

e = (l , c, S ) (2)

Hence, a timetable is a mapping set of all events into several
or all packets. A mapping of a packet and an event is a pair (p),
which is defined by following notation:

p = (q , e) (3)

Following previous research [2,21], this work also uses two
types of constraints: hard and soft constraint (SCs). Hard constraint
(HC) is a constraint that must be satisfied. SC is better to be
fulfilled to improve the quality of the timetable.

This work uses five HCs and seven SCs. V i is the vio-
lation count for each i constraint. Furthermore, the following
equations are the mathematical models of each constraint used in
this work:

2.1. HC 1: No conflict of lecturers There is no lecturer
who has been set in different rooms at the same time.

V1 =
∑
p∈P

∑
p′∈P

f1(p, p ′) = 0 (4)

f1(p, p ′) =
{

1, if(l p = l p ′ ∧ t p = t p ′ ∧ p �= p ′)
0, otherwise

(5)

2.2. HC 2: No conflict of classes There is no packet
that has been set for different events at the same time.

V2 =
∑
p∈P

∑
p′∈P

f2(p, p ′) = 0 (6)

f2(p, p ′) =
{

1, if(qp = qp ′ ∧ p �= p ′)
0, otherwise

(7)

2.3. HC 3: Any event should be scheduled in a
suitable capacity room No event has been set in a room
with a less than suitable capacity.

V3 =
∑
p∈P

f3(p) = 0 (8)

f3(p) =
{

1, if(CAP−
ep > CAPrp )

0, otherwise
(9)

2.4. HC 4: Lecturers should not be scheduled within
their time constraints Lecturers such as professors, rectors,
and deans should be set in their time constraints.

V4 =
∑
p∈P

f4(p) = 0 (10)

f4(p) =
{

1, if(l p ∈ K ∧ t p ∈ Xlp )

0, otherwise
(11)

2.5. HC 5: Some lecturers should be scheduled
in their time preferences Lecturers such as professors, rec-
tors, and deans should be set in their preferred time.

V5 =
∑
p∈P

f5(p) = 0 (12)

f5(p) =
{

1, if (l p ∈ K ∧ t p /∈ PREFlp )

0, otherwise
(13)

2.6. SC 1: Lecturer assignment spread The teaching
event for a lecturer should be set to a maximum of LC + events in
a day.

Minimize V6 =
∑
l∈L

∑
d∈D

f6(l , d , P) (14)

f6(l , d , P) =
{

1, if(CNTTIME(l , d , P) > LC +)

0, otherwise
(15)

2.7. SC 2: Class event spread An event of a class
should be set to a minimum of CC − days of interval in a week.
In a real world, there is a special case in which a class can be
conducted for more than once in a week. For example, class AR002
must be taught twice a week. Thus, it is possible to have several
similar events mapped into different packets. These similar events
are interchangeable, which is shown by the following notation:

Minimize V7 =
∑
p∈P

∑
p′∈P

f7(p, p ′) (16)

f7(p, p ′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if(DATE(t p) − DATE(t p ′) ≥ 0∧
DATE(t p) − DATE(t p ′) < CC −

∧ cp = cp ′ ∧ p �= p ′)
0, otherwise

(17)

2 IEEJ Trans (2019)
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Table I. UCTP formulation

Indices and sets
p∈P Set of pairs
e∈E Set of teaching events ep Event of pair p
q∈Q Set of packets qp Packet of pair p
l∈L Set of lecturers l p Lecturer of pair p
b∈B Set of subjects bc Subject of class c
Gb ⊆ L Set of group teaching lecturers for subject b
k∈K ⊆ L Set of special lecturers
r∈R Set of rooms rp Room of pair p
t∈T Set of time t p Time of pair p
c∈C Set of classes cp Class of pair p
d∈D Set of days dp Day of pair p
z∈Z Set of all students
s∈S ⊆ Z Set of students S p Students of pair p
Functions
CNTTIME (l ,d ,P ) Count event of l in a day
DATE (t) Return the date of time t
CNTSTIME (z ,d ,P ) Count event of z in a day
TGAP (t ,t

′
) Time interval of t and t

′

Parameters
w i Weighting of constraint i
V i Total violation of constraint i
CAPr Capacity of room r
CAP−

e Minimum room capacity of event e
X l Prohibited time of lecturer l
PREF l Preference time of lecturer l
Constant
LC + Maximum lecturer event in a day
LC − Minimum time interval between two events of a lecturer
CC − Minimum class event interval in a week
SC + Maximum student event in a day
GC − Minimum group teaching event interval

2.8. SC 3: Time constraints between different events
in the same group Group teaching is a mechanism in
which several classes with the same subject are taught by a
group of lecturers interchangeably. The time interval between
two events for group teaching should less than its minimum time
constraint.

Minimize V8 =
∑
p∈P

∑
p′∈P

f11(p, p ′) (18)

f8(p, p ′) =

⎧⎪⎪⎨
⎪⎪⎩

1, if(bcp = bcp ′ ∧ TGAP(t p , t p
′
) < GC −

∧ l p ∈ Gbcp ∧ l p
′ ∈ G

b
cp

′
)

0, otherwise

(19)

2.9. SC 4: Some lecturers should be scheduled
in their preferred time The teaching event for a lecturer
should be set in their preferred time.

Minimize V9 =
∑
p∈P

f9(p) (20)

f9(p) =
{

1, if(t p /∈ PREFlp )

0, otherwise
(21)

2.10. SC 5: Time constraints between events for a
lecturer The time interval between two events of a lecturer
should not less than the minimum time constraint interval.

Minimize V10 =
∑
p∈P

∑
p′∈P

f10(p, p ′) (22)

f10(p, p ′) =

⎧⎪⎨
⎪⎩

1, if (l p = l p ′ ∧ p �= p ′

∧ TGAP(t p , t p ′) < LC −)

0, otherwise

(23)

2.11. SC 6: Student assignment spread The events
of a student should be set to the maximum SC + events in a day

Minimize V11 =
∑
z∈Z

∑
d∈D

f8(z , d , P) (24)

f11(z , d , P) =
{

1, if(CNTSTIME(z , d , P) > SC +)

0, otherwise
(25)

2.12. SC 7: Minimize student conflict Minimize stu-
dents who have been set in different rooms or classes meeting at
the same time

Minimize V12 =
∑
z∈Z

∑
p∈P

∑
p′∈P

V12(z , p, p ′) (26)

f12(z , p, p ′) =

⎧⎪⎨
⎪⎩

1, if(z ∈ sp ∧ z ∈ S p ′

∧ t p = t p
′ ∧ p �= p

′
)

0, otherwise

(27)

3. DM-LIMGA

Island’s independent processing and migration policy is the main
discussion in island model topics. That is because an improvement
in these topics can produce a higher diversity, which leads to

3 IEEJ Trans (2019)
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Fig. 1. DM-LIMGA mechanism

a better result. Accordingly, previous research designed DM-
LIMGA as a mechanism which is the combination of improvement
in these topics [22], which combines LIMGA as the island’s
independent processing and DDMP as the migration policy.

LIMGA is the island’s independent processing approach. It sees
an island as a single living environment of its population [18].
As the implication, each island configuration can be the value of
its parameters, or even its core algorithm might be different. This
difference could branch into separate evolution paths, which can
be its speed or chromosome pattern. An island may evolve more
quickly or more efficiently to produce a better individual than other
islands.

Different living environments must incline toward specific goals.
From previous research [18], we classified them into standard,
speed-based, and performance-based GA. Speed-based GA is a GA
variant that tends to patch up its computational speed. It tries to get
a good result as fast as possible. On the contrary, performance-
based GA tries to get a better result in every generation even
though it takes more time than the others.

Figure 1 represents the combination mechanism of DDMP
and localization strategy of DM-LIMGA. Every a slave island
accomplishes a generation; it puts the current best individual in
its migrant window (MW). MW is a buffer placed in the master
island to keep the best individual from each slave island.

In DDMP, island has two states: pursuer and avoider [20]. The
island has a chance to be a pursuer or an avoider depending on the
current condition. If the island has a diversity level (represented
by its bias value) less than the threshold, then the island state will
be a pursuer . On the other hand, if there is an island that has
diversity level more than or equal to a threshold, then the island
state will be an avoider .

Each slave executes a different GA procedure. At the end of
every generation t of slave island i , the best individual Pt

i is sent
as a migrant to the master Island. Then, island i takes a migrant
from another island based on the DDMP algorithm, as shown in
Fig. 2. If there is any individual except this migrant in MW, the
master island compares the bias value Bt

i of the original island i
with the predefined threshold θ . If it is more than or equal to θ ,
the master fsland finds an individual in MW that has the furthest
Hamming distance δ from this migrant. Finally, the master island
migrates it from MW to the island i .

On the other hand, if the bias value is less than θ , the master
island finds an individual in MW that has the largest attractiveness
α. Finally, the master island migrates it to island i . The formulation

Fig. 2. Dual dynamic migration policy algorithm

Fig. 3. University timetabling representation

of the bias value, Hamming distance, and attractiveness will be
discussed later.

4. DM-LIMGA for UCTP

Previous work [22] designed DM-LIMGA to solve a theoretical
single-objective optimization problem. It used simple numerical
encoding with general GA, pseudo-GA (PGA), and informed GA
(IGA) as its slave islands. However, modification in terms of
encoding and slave islands is needed.

4.1. Encoding We use direct chromosome as the GA
encoding. Direct chromosome mimics the real-world representa-
tion, which, in this case, is the university timetabling, as shown in
Fig. 3. This timetable has R rooms and timeslots, which consist of
6 days multiplied by 10 shifts (7 am to 4 pm). This direct chromo-
some uses enumeration encoding, so the room is encoded as 1 to
R for Room 1 to Room R. On the other hand, time is encoded as 1
for 7 am Monday, 2 for 8 am Monday, and 60 for 4 pm Saturday.
As a result, the chromosome is shown in Fig. 4 as the encoding
from timetable in Fig. 3.

Figure 4 shows that a gene block consists of five parts (time,
room, lecturer, class, and students). We count the individual length
as equal to the number of events (gene blocks). Furthermore,
because the search space is only the packet (time and room),
the other parts (lecturer, class, and students) are fixed. So,
programmatically, all GA operations (mutation and crossover) are
only applied to a packet.

4 IEEJ Trans (2019)



SOLVING UCTP USING DM-LIMGA

Fig. 4. Directed chromosome and its encoding

4.2. Problem definition The goal of this work is to solve
student sectioning UCTP. However, this problem, especially with
a large number of students, is almost impossible to solve. The
large student number will lead to extensive time computation due
to objective function evaluations.

This condition will be more problematic because we have to
guarantee that HCs are always satisfied. If we limit HC satisfaction
strictly, the possible search spaces will also be limited. As a result,
we cannot produce any satisfactory solutions. Thus, in this work,
we introduce HC satisfaction in the objective function, as shown
in (28), with a large weighting.

Minimize VHC =
5∑

i=1

Vi (P) (28)

The introduction of HCs in objective function means there will
be no guarantee that HCs are always satisfied. Therefore, we
dedicate a slave, which only focuses on HC satisfaction, while
other islands will focus on satisfying class- and student-level SCs.
The HC dedicated slave will generate a migrant that is satisfies
the HCs and distributes it to other islands. All slaves communicate
with each other via migration controlled by the DDMP algorithm
in the master island.

With these considerations, our slave island localization strategy
focuses on three different areas. The first slave focuses on
maintaining HCs, the second slave focuses on solving class-level
SCs with the objective function as shown in (29), and the third
slave focuses on solving student-level SCs with the objective
function as shown in (30).

Minimize Vclass =
10∑

i=1

Vi (P) (29)

Minimize Vstudent =
12∑

i=1

Vi (P) (30)

4.3. Slave Island GA Previous research by Gozali et al.
[2] succeeded in solving medium-scale student sectioning UCTP.
They implemented the asynchronous island model GA (AIMGA),
which is a basic island model GA with an asynchronous mech-
anism. However, this work has more complex student sectioning
UCTP, and the previous solution cannot handle it. Therefore, this
work proposes DM-LIMGA as its solution.

DM-LIMGA uses a localization strategy by implementing a
different kind of GA for each slave. We modify the previous
GA model used to solve Telkom UCTP [2]. We divide the slaves
into shallow GA (SGA) for speed-based, medium GA (MGA) for
standard, and deep GA (DGA) for performance-based. Each slave
performs GA procedure, which is shown in Fig. 5.

Figure 5 shows that for each generation t of island i , we perform
GA steps such as elitism, selection, crossover, and mutation. Only
in the first generation, we make an initial population of P by using
greedy initialization with PopSize as a number of individuals. For
each generation, we create an empty population of P′ to be the
new population and save elite individuals.

Fig. 5. GA procedure

We implement elitism to maintain elite individuals among the
population. If there is a migrant found by DDMP algorithm, we
put it into P′. Otherwise, we put the best individual of P into P′.
Furthermore, we also put the best M individuals of P into P′. So,
the number of elite individuals is 1 + M .

We use roulette wheel selection to select two individuals idv1

and idv2 as parents. By using a roulette wheel, we can choose
the parents fairly based on their evaluation; we crossover these
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selected parents with crossover probability Pc to produce off-
springs, then they are evaluated. SGA island uses HC evaluation,
and the others use class-level evaluation. We pick the best two
individuals among parents and offsprings to be the new parents.

We divide the mutation into two stages to divide the focus of
each slave. Thus, its execution depends on the slave type. SGA
and MGA execute stage 1 only, but DGA executes both stages.
SGA’s role is to maintain the reliability of the result by keeping
the HCs. Because SGA only focuses on HC solution, SGA will
be the fastest slave among all. SGA will actively correct the HC
violation of the best individual from the other islands.

MGA focuses on yielding result by satisfying the class-level
SCs. MGA is slower than SGA but faster than DGA, which focuses
on yielding result by satisfying the student-level SCs. DGA is the
slowest among all slaves because of the large number of students.

We mutate the new parents (stage 1 mutation) with mutation
probability Pm to produce offsprings, and then they are evaluated.
SGA island uses HC evaluation, and the others use class-level
evaluation. We pick the best two individuals among parents and
offsprings to be the new parents.

If we implement DGA, we continue to stage 2 mutation with
a mutation probability Pm . Stage 2 mutation is the same as
stage 1 mutation, but not the evaluation. Stage 2 uses student-
level evaluation for parents and offsprings. We pick the best two
individuals among parents and offsprings to be the new parents.
We put the last parents into P

′
.

The process is repeated from selection until mutation until the
number of individuals in P′ equals to PopSize. After that, the
population P′ replaces P and we proceed to the next generation.

These are the specific configurations of each slave:

• SGA

The main goal of SGA is to focus on solving HCs. To achieve
this goal, SGA runs GA operations (mutation, crossover, and
selection) by considering only the HCs. Thus, SGA uses (28) for
the evaluation and only runs stage 1 mutation.

• MGA

The main goal of medium GA (MGA) is to yield class-level
timetable. MGA runs GA operation by considering class-level SCs.
As a consequence, MGA uses (29) for the evaluation and only runs
stage 1 mutation.

• DGA

The main goal of deep GA (DGA) is to yield student-level
timetabling. MGA runs GA operation by considering all con-
straints, including student-level SCs. As a consequence, DGA runs
not only stage 1 mutation with (29) but also stage 2 with (30) for
the evaluation.

4.3.1. Crossover We use a multi-point crossover where the
number of affected genes is N c of all genes that violate constraints.
The crossover follows these steps:

1. Take two individuals from the selection as parents.
2. Select N c of all events that violate constraint in the first

parent.
3. Select an event out of them.
4. Select an event randomly from the second parent which has

same room capacity with the selected event from first parent
regardless of the violation.

5. Swap the selected event of first parent with second parent.
6. Repeat steps 3–5 until all selected events from first parent

are swapped.

Fig. 6. M1 (moving)

4.3.2. Mutation We use three mutation steps to improve
the probability of producing better offsprings. These three muta-
tions are M1 (moving), M2 (swapping), and M3 (comparing). All
mutations are always executed sequentially for each individual.
The number of affected genes for mutation is N m of all genes that
violate the constraints.

• M1 (Moving)

Select an event that violates the constraint. Move this event to an
unused packet (see (1)). The unused packet is a packet that has not
been taken by an event. The target packet is selected from the list
of unused packets with appropriate room capacity. M1 (Moving)
is illustrated in Fig. 6.

• M2 (Swapping)

Select an event that violates the constraint as the first event. Find
other events that have the same subject with the first event. Select
an event as a target event randomly from them. Swap the first
event with the target event. If the swap decreases violations, keep
the new individual; otherwise cancel the swap. M2 (Swapping) is
illustrated in Fig. 7.

• M3 (Comparing)

Select an event that violates the constraint. Select randomly
two other events that have same room capacity regardless of the
violation. Swap the violated event with the one that produces lower
violations. If the new individual decreases violations, keep the
new individual; otherwise cancel the swap. M3 (Comparing) is
illustrated in Fig. 8.

4.4. Bias value We adapted Bias value from forking
genetic algorithm [23] to check diversity of current island i ’’s
population at generation t . The bias value Bt

i is defined as the
diversity degree of island i , which is 0.5 ≤ Bt

i ≤ 1.0.
The previous bias formulation was binary type [23]. However,

because this work uses enumeration type, we modified the bias
formulation to normalize its value. The bias modification is shown
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Fig. 7. M2 (swapping)

Fig. 8. M3 (comparing)

in (31), where pt
i is the individual of island i (pt

i ∈ Pt
i ) so

that pt
i ,e is its gene value at event e. UBi is an upper bound

(maximum) value of all individual genes in island i (Max(pt
i ,e) :

∀pt
i ,e ∈ Pt

i ∧ e ∈ E ). | Pt
i | is the population size and |E | is the

number of events.

Bt
i = 1

| Pt
i | × | E |

∑
pt

i ∈Pt
i

(∣∣∣∣∣
∑
e∈E

[
pt

i ,e + UBi

2 × UBi

]
− | E |

2

∣∣∣∣∣ + | E |
2

)

(31)

4.5. Hamming distance Similar to bias formulation, the
binary δ from previous research [18] needs to be modified for
enumeration type chromosome representation. Instead of using
all packet and event elements (1) and (2), we used three main
elements (time, room, and lecturer) for the sake of simplicity and
performance.

Equation (32) shows the modification of δ used in this work.
Here, pi and pi

′
are the compared individuals of island i and i

′
.

Moreover, pi ,f (e,x ) is the gene value of individual from island i
with f (e,x ) as its index (f (e,x ) = 5e + x ). e is an event (e∈E )
and x : x∈ [1–3] is representation of time (x = 1), room (x = 2),
and lecturer (x = 3), as can be seen in Fig. 4. Accordingly,
MAX 1,MAX 2, and MAX 3 are the maximum index values of time
|T |, room |R|, and lecturer |L|, respectively (see Table I).

δ(i , i
′
) =

∑
e∈E

3∑
x=1

pi ,f (e,x) − pi
′ ,f (e,x)

MAX x
(32)

4.6. Attractiveness We use attractiveness from previous
research [24] to find the most potential island that produces better
fitness in its last generation. Attractiveness αi of an island i is
given by

αi = αi
prev + (η

pop
i + η

mig
i ), i = 1, 2, . . . , I (33)

where I is the total number of islands in the model, and αi
prev

is the attractiveness of the island i accumulated until the previous
migration. Equations (34) and (35) explain the formulation of η

pop
i

and η
mig
i , respectively.

η
pop
i =

∣∣∣∣∣∣
∑S

p
i

k=1(fk
P

prev
i − fk Pi )

S p
i

∣∣∣∣∣∣ (34)

where S p
i is the size of native (original) population of the island

i , fk Pi is the fitness value of the k th solution, and fk
P

prev
i is the

previous fitness value of k th solution before migration.

η
mig
i =

∣∣∣∣∣∣
∑S m

i
k=1(fk

M
prev
i − fk Mi )

S m
i

∣∣∣∣∣∣ (35)

Similar to η
pop
i , S m

i is the size of migrant population of the island

i , fk Mi is the fitness value of the k th solution, and fk
M

prev
i is the

previous fitness value of k th solution before migration.

5. Experimental Result

We perform experiments to analyze DM-LIMGA’s performance
in handling student sectioning UCTP. We also compare our
proposed solution with other solvers to solve class-level UCTP
benchmarks.

5.1. Parameter settings We set the weight of HCs much
larger than SCs. We set the HC weight with a large number M ,
i.e., M = 1000, programmatically. As a result, MGA will prioritize
poor fitness caused by HCs. The SCs become the focus after all
HCs have been satisfied. We set the penalty values of SCs as
proportional to their influence. From this consideration, the SCs
penalty value configuration is presented in Table II.

We set the GA parameters from previous work [2]. The
GA parameter configurations are: mutation probability Pm = 0.1
with number of mutated genes N m = 10%, crossover probability
Pc = 0.8 with number of crossovered genes N c = 10%, maximum
generation MaxGen = 200, and population size PopSize = 30.
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Table II. Soft constraint penalty configuration

Soft constraint Value

SC 1, SC 2—high lecturer and class SCs 50
SC 3—group teaching SC 5
SC 4, SC 5—low lecturer SCs 20
SC 6, SC 7—student SCs 1

Table III. Telkom UCTP characteristics

No Attributes 2011/2012 2016/2017

1 Rooms 80 562
2 Classes (avg. per semester) 813 5309.25
3 Average number of meetings

per class
2.75 2.62

4 Lecturers 316 1470
5 Average classes per lecturers 2.58 4.78
6 Students (avg. per semester) 6570 23 451
7 Average number of classes per

students
6.48 5.03

5.2. Dataset Dataset used in this work was Telkom Uni-
versity odd/even semester for 2011/2012 (before merging) and
2016/2017 (after merging) enrollment years. To be specific, the
student body at Telkom University has increased from 6570 stu-
dents in 2011 to 23 451 in 2016. This increase is a result of the
merging of four universities. The detailed dataset characteristics
comparison is shown in Table III.

5.3. Experiment 1—proof of concept The first exper-
iment implemented DM-LIMGA for Telkom UCTP 2011/2012 as
well as 2016/2017 enrollment years. We observed its performance
based on the best and average fitness values in five runs. For addi-
tional insight, we include the HC violation percentages. Table IV
shows that DM-LIMGA could yield an acceptable fitness value for
2011/2012 as well as 2016/2017 enrollment years. DM-LIMGA
could achieve a small violation percentage in timetabling, which
means that we can accept these results as a feasible timetable.

5.4. Experiment 2—diversity analysis The reason
behind the implementation of DM-LIMGA is to further main-
tain population diversity while pursuing a better result. The sec-
ond experiment aims to analyze DM-LIMGA’s performance for
Telkom UCTP problems and monitor its bias value trend-line.
Figures 9 and 10 represent the DM-LIMGA experimental results
for Telkom UCTP 2011/2012 and 2016/2017, respectively. We

Table IV. DM-LIMGA result for Telkom UCTP

Fitness Violation %

Problem Best Average Best Average

2011/2012 4540 4887 0.16% 0.18%
2016/2017 96 562 97 023.43 7.36% 7.43%

took the fitness and bias values from the best island in every gen-
eration.

Those figures show that DM-LIMGA could preserve island
diversity as well as get a better result by generations. The bias
value lies between 0.82 and 1, which means good diversity
preservation. Flat trend-line shows that DM-LIMGA still could
tend to fall in convergence, though the population diversity is
already well preserved.

5.5. Experiment 3—comparison analysis The third
experiment compares DM-LIMGA together with the standard
(GA) [25], and asynchronous island model genetic algorithm
(AIMGA) as a previous solver for Telkom UCTP [2], and UniTime
[26] as a current generic UCTP solver. The parameter configuration
and chromosome structure of GA and AIMGA were the same as
with DM-LIMGA. The comparison details are shown in Table V.

According to [26], UniTime has a different constraint con-
figuration format from Telkom UCTP. Therefore, we conducted
a constraint mapping from Telkom UCTP into UniTime format
(v2.3), which is explained in Table VI, where SAME_ROOM
means given classes must be taught in the same room, SPREAD
means given classes have to be spread in time (overlapping of the
classes in time needs to be minimized), NHB_GTE means given
classes must have 1 h or more in between, NHB_LT means given
classes must have less than 6 h from the end of first class to the
beginning of the next, and NHB means given classes must have
exactly x hours in between the end of one and the beginning of
another.

Table VII shows the average of violation percentage comparison
of DM-LIMGA, GA, AIMGA, and UniTime in five runs. The
unfeasible value in UniTime cell for Telkom UCTP 2016/2017
enrollment year means that it could not get a result in a reasonable
time (6 h runtime limit exceeded). Besides, this table points out
that DM-LIMGA could surpass other algorithm results for both
problems.

5.6. Experiment 4—benchmark analysis This last
experiment compares the DM-LIMGA’s performance with several
UCTP solutions by using the International Timetabling Compe-
tition (ITC) 2007 benchmark datasets [12]. Table VIII shows the
problem specification of this dataset. There are 24 test cases with
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Fig. 9. Fitness-bias trend-line for problem 2011/2012
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Table V. M-LIMGA, GA, and AIMGA configuration comparison

Algorithm

Differences DM-LIMGA GA AIMGA

Chromosome encoding Direct encoding Direct encoding Direct encoding
Mutation Directed mutation Random mutation Directed mutation
Crossover Directed multi-point Random multi-point Random multi-point
Elitism Implemented Implemented Implemented
Island model Yes No Yes
GA core Three level directed GA Standard GA All informed GA
Migration policy DDMP None Migration protocol

Table VI. Constraints mapping from Telkom UCTP into UniTime

Telkom UCTP UniTime

HC1 Embedded in solver
HC2 Embedded in solver
HC3 Strictly supported in data format, SAME_ROOM
HC4 Strictly supported in data format
HC5 Implicitly supported in related class constraints
SC1 Share same constraint with HC5
SC2 SPREAD
SC3 NHB_GTE, NHB_LT, NHB
SC4 Share same constraint with HC5
SC5 NHB_GTE, NHB_LT, NHB
SC6 Implicitly supported in related class constraints
SC7 Embedded in solver

various combinations of events, rooms, features, and students. We
only used the Track 3 ITC curriculum-based course timetabling.
This problem is only general UCTP without student sectioning,
so we must modify our algorithm to meet this requirement by the
process only the stage 1 of directed GA (Fig. 5, stage 1).

Table IX displays the benchmark experimental result of ITC-
2007 dataset. The values show the fewest violation result of each
solution. We compare DM-LIMGA with several current UCTP
solutions, such as CBS: Constraint Based Solver by Muller [5],
TSA:Tabu Search Approach by Lu and Hao [9], CSP: Constraint
Satisfaction Problem by Atsuta [13], TAM: Threshold Acceptance
Metaheuristic by Geiger [7], RBT: Repair Based TimeTable Solver
by Clark [8], ATS: Adaptive Tabu Search by Lu and Hao [10],
HMA: A Hybrid Metaheuristic Approach by Salwani Abdullah
[14], ITS-LS: Incorporating Tabu Search and Local Search by
Atsuta et al. [13], GDA: Great Deluge Algorithm with Kempe
Chain by McCollum et al. [17], ILS: Iterative Local Search by
Soria-Alcaraz et al. [6], HGATS: The Hybrid Approach Hybrid
Genetic Algorithm and Tabu search by Jat and Yang [15], MMA:
Mixed Metaheuristic Approach by Cambazard et al. [16], CTI:

Table VII. DM-LIMGA violation percentage comparison

Problem DM-LIMGA GA AIMGA UniTime

2011/2012 0.18% 2.72% 2.39% 13.85%
2016/2017 7.43% 57.34% 25.54% Unfeasible

Combination of a General Purpose Constraint Satisfaction Solver,
Tabu Search and Iterative Local Search Techniques by Atsuta et al.
[27], HA: A Hybrid Algorithm by Chiarandini et al. [12], and
ACO: Ant Colony Optimization algorithm in Conjunction with A
Iterative Local search by Nothegger et al. [11].

These results are extracted from each paper or a review paper
in UCTP by Babaei et al. [28]. Similar to the review paper, we
only compare the violation numbers because in general practice
of university timetabling, the computational time is usually not
the primary consideration. That is because a university is usually
required to make a timetable once in a semester. So the time limit
might be around a few days in the end or beginning of a semester.

Table 10 shows that DM-LIMGA could get the fewest violations
for 13 of 24 test cases which are shown by bold value in the
table. This result proves the consistency and reliability of DM-
LIMGA in handling UCTP. It supports our finding in previous
experiments. Moreover, DM-LIMGA could yield better results
among the current UCTP solvers not only for Telkom University
datasets but also general UCTP benchmarks.

6. Conclusions

This paper showed that the DM-LIMGA could overcome
not only Telkom UCTP 2011/2012 (before merging) but also
2016/2017 (after merging) enrollment year with acceptable accu-
racy represented by the fitness function. For both problems, this
proposed approach yielded small violation percentages for all con-
straints. This result shows that DM-LIMGA could handle scaling
UCTP well and produce a feasible timetable.

Furthermore, from the second experiment, we could conclude
that the reason behind DM-LIMGA’s performance is its ability
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Table VIII. Complete specification of ITC-2007 dataset

Problem #Events #Rooms #Features #Students

Max.
students
per event

Max.
events

per students

Mean
features

per room

Mean
features

per event

ITC-1 400 10 10 500 33 25 3 1
ITC-2 400 10 10 500 32 24 4 2
ITC-3 200 20 10 1000 98 15 3 2
ITC-4 200 20 10 1000 82 15 3 2
ITC-5 400 20 20 300 19 23 2 1
ITC-6 400 20 20 300 20 24 3 2
ITC-7 200 20 20 500 43 15 5 3
ITC-8 200 20 20 500 39 15 4 3
ITC-9 400 10 20 500 34 24 3 1
ITC-10 400 10 20 500 32 23 3 2
ITC-11 200 10 10 1000 88 15 3 1
ITC-12 200 10 10 1000 81 15 4 23
ITC-13 400 20 10 300 20 24 2 1
ITC-14 400 20 10 300 20 24 3 1
ITC-15 200 10 20 500 41 15 2 3
ITC-16 200 10 20 500 40 15 5 3
ITC-17 100 10 10 500 195 23 4 2
ITC-18 200 10 10 500 65 23 4 2
ITC-19 300 10 10 1000 55 14 3 1
ITC-20 400 10 10 1000 40 15 3 1
ITC-21 500 20 20 300 16 23 3 1
ITC-22 600 20 20 500 22 25 3 2
ITC-23 400 20 30 1000 69 24 5 3
ITC-24 400 20 30 1000 41 15 5 3

Table IX. Violation numbers of all solvers for ITC-2007 dataset

Problem CBS TSA CSP TAM RBT ATS HMA ITS-LS GDA ILS HGATS MMA CTI HA ACO
DM-

LIMGA

ITC-1 5 5 5 5 10 5 5 5 5 5 523 571 61 1482 15 5
ITC-2 51 55 50 111 111 34 39 50 60 48 342 993 547 1635 0 382
ITC-3 84 71 82 128 119 70 76 82 81 76 379 164 382 288 391 82
ITC-4 37 43 35 72 72 38 35 35 39 41 234 310 529 385 239 38
ITC-5 330 309 312 410 426 298 315 312 31 303 0 5 5 559 34 5
ITC-6 48 53 69 100 130 47 50 69 45 54 0 0 0 851 87 0
ITC-7 20 28 42 57 110 19 12 42 21 25 0 6 0 10 0 0
ITC-8 41 49 40 77 83 43 37 40 41 47 0 0 0 0 4 0
ITC-9 109 105 110 150 139 99 104 110 102 106 1102 1560 0 1947 0 0
ITC-10 16 4 27 71 85 16 10 9 17 23 515 2163 0 1741 0 0
ITC-11 0 0 0 0 3 0 0 0 0 0 246 178 548 240 547 0
ITC-12 333 343 351 442 4.8 320 337 351 349 324 241 146 869 475 32 242
ITC-13 66 73 68 622 113 65 61 68 43 68 0 0 0 675 166 0
ITC-14 59 57 59 90 84 52 53 59 59 53 0 1 0 804 0 0
ITC-15 84 71 82 128 119 69 73 82 82 74 0 0 379 0 0 0
ITC-16 34 39 40 81 84 38 32 40 49 42 0 2 91 1 41 32
ITC-17 83 91 102 124 152 80 72 102 81 81 0 0 1 5 68 81
ITC-18 83 96 68 116 110 67 77 68 79 69 0 0 0 3 26 0
ITC-19 62 65 75 107 111 59 60 75 67 65 121 1824 1862 1868 22 75
ITC-20 27 47 61 88 144 35 22 61 30 35 304 445 1215 396 2735 46
ITC-21 103 106 123 174 169 105 95 123 110 106 36 0 0 602 33 0
ITC-22 — — — — — — — — — — 1154 29 0 1364 0 0
ITC-23 — — — — — — — — — — 963 238 430 688 1275 378
ITC-24 — — — — — — — — — — 274 21 720 822 30 25
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to preserve the population diversity for each of the slave islands.
However, because of the problem complexity, DM-LIMGA still
could tend to fall in convergence, though it gives an acceptable
result. Moreover, the final experiment shows that DM-LIMGA’s
performance is better than those of other solvers not only for
Telkom University datasets but also general UCTP benchmark
datasets.

Finally, this study confirms that DM-LIMGA can solve the
student sectioning Telkom UCTP with an acceptable result. This
proposed approach also proves its scalability by overcoming
scaling Telkom UCTP. This study also gives additional evidence
that encourages the implementation of DDMP in LIMGA, which
could maintain its population diversity. Also, further studies still
need to be conducted for applying DM-LIMGA to the other UCTP
benchmarks. A more in-depth investigation into the convergence
in the last half of generations is also needed. Further studies
on its network cost are necessary, too, to investigate the real
computational time and cost.
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Berlin, Heidelberg; 2006; 189–209. https://doi.org/10.1007/978-3-
540-77345-0_13.

(4) Carter MW. A comprehensive course timetabling and student
scheduling system at the university of waterloo. In Practice and
Theory of Automated Timetabling III: Third International Confer-
ence, PATAT 2000 Konstanz, Germany, August 16–18, 2000 Selected
Papers . Burke E, Erben W (eds). Springer: Berlin, Heidelberg; 2001;
64–82.

(5) Muller T, Murray K. Comprehensive approach to student sectioning.
Annals of Operations Research 2010; 181:249–269.
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